| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝐴 )  =  0  →  ( 0 ... ( ♯ ‘ 𝐴 ) )  =  ( 0 ... 0 ) ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( ( ♯ ‘ 𝐴 )  =  0  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  ↔  𝑁  ∈  ( 0 ... 0 ) ) ) | 
						
							| 3 |  | elfz1eq | ⊢ ( 𝑁  ∈  ( 0 ... 0 )  →  𝑁  =  0 ) | 
						
							| 4 |  | elfz1eq | ⊢ ( 𝑀  ∈  ( 0 ... 0 )  →  𝑀  =  0 ) | 
						
							| 5 |  | swrd00 | ⊢ ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  0 〉 )  =  ∅ | 
						
							| 6 |  | swrd00 | ⊢ ( 𝐴  substr  〈 0 ,  0 〉 )  =  ∅ | 
						
							| 7 | 5 6 | eqtr4i | ⊢ ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  0 〉 )  =  ( 𝐴  substr  〈 0 ,  0 〉 ) | 
						
							| 8 |  | opeq1 | ⊢ ( 𝑀  =  0  →  〈 𝑀 ,  0 〉  =  〈 0 ,  0 〉 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑀  =  0  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  0 〉 )  =  ( ( 𝐴  ++  𝐵 )  substr  〈 0 ,  0 〉 ) ) | 
						
							| 10 | 8 | oveq2d | ⊢ ( 𝑀  =  0  →  ( 𝐴  substr  〈 𝑀 ,  0 〉 )  =  ( 𝐴  substr  〈 0 ,  0 〉 ) ) | 
						
							| 11 | 7 9 10 | 3eqtr4a | ⊢ ( 𝑀  =  0  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  0 〉 ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝑀  ∈  ( 0 ... 0 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  0 〉 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 0 ... 𝑁 )  =  ( 0 ... 0 ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝑁  =  0  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  ↔  𝑀  ∈  ( 0 ... 0 ) ) ) | 
						
							| 15 |  | opeq2 | ⊢ ( 𝑁  =  0  →  〈 𝑀 ,  𝑁 〉  =  〈 𝑀 ,  0 〉 ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑁  =  0  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  0 〉 ) ) | 
						
							| 17 | 15 | oveq2d | ⊢ ( 𝑁  =  0  →  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  0 〉 ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑁  =  0  →  ( ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 )  ↔  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  0 〉 ) ) ) | 
						
							| 19 | 14 18 | imbi12d | ⊢ ( 𝑁  =  0  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) )  ↔  ( 𝑀  ∈  ( 0 ... 0 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  0 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  0 〉 ) ) ) ) | 
						
							| 20 | 12 19 | mpbiri | ⊢ ( 𝑁  =  0  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝑁  ∈  ( 0 ... 0 )  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 22 | 2 21 | biimtrdi | ⊢ ( ( ♯ ‘ 𝐴 )  =  0  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) ) | 
						
							| 23 | 22 | impcomd | ⊢ ( ( ♯ ‘ 𝐴 )  =  0  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  =  0 )  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 25 |  | ccatcl | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 27 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  𝑀  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 28 |  | elfzelfzccat | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐴  ++  𝐵 ) ) ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐴  ++  𝐵 ) ) ) ) | 
						
							| 30 | 29 | ad2ant2rl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐴  ++  𝐵 ) ) ) ) | 
						
							| 31 |  | swrdvalfn | ⊢ ( ( ( 𝐴  ++  𝐵 )  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐴  ++  𝐵 ) ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 32 | 26 27 30 31 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 33 |  | 3anass | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  ↔  ( 𝐴  ∈  Word  𝑉  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ) | 
						
							| 34 | 33 | simplbi2 | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 37 |  | swrdvalfn | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 )  Fn  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 39 |  | simp-4l | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  𝐴  ∈  Word  𝑉 ) | 
						
							| 40 |  | simp-4r | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  𝐵  ∈  Word  𝑉 ) | 
						
							| 41 |  | elfznn0 | ⊢ ( 𝑀  ∈  ( 0 ... 𝑁 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 42 |  | nn0addcl | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) | 
						
							| 43 | 42 | expcom | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( 𝑀  ∈  ( 0 ... 𝑁 )  →  ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) ) | 
						
							| 45 | 44 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( 𝑘  ∈  ℕ0  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) ) | 
						
							| 46 |  | elfzonn0 | ⊢ ( 𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 47 | 45 46 | impel | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝑘  +  𝑀 )  ∈  ℕ0 ) | 
						
							| 48 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 49 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 50 | 49 | simplbi2 | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐴 )  ≠  0  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 51 | 48 50 | syl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝐴 )  ≠  0  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( ♯ ‘ 𝐴 )  ≠  0  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 54 | 53 | ad2antrr | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 55 |  | elfzo0 | ⊢ ( 𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ  ∧  𝑘  <  ( 𝑁  −  𝑀 ) ) ) | 
						
							| 56 |  | elfz2nn0 | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  ↔  ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 57 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 58 | 57 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 59 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 60 | 59 | ad2antll | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 61 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 63 | 58 60 62 | ltaddsubd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( ( 𝑘  +  𝑀 )  <  𝑁  ↔  𝑘  <  ( 𝑁  −  𝑀 ) ) ) | 
						
							| 64 |  | nn0readdcl | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  𝑀 )  ∈  ℝ ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( 𝑘  +  𝑀 )  ∈  ℝ ) | 
						
							| 66 |  | nn0re | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  →  ( ♯ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 67 | 66 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 68 |  | ltletr | ⊢ ( ( ( 𝑘  +  𝑀 )  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  ( ♯ ‘ 𝐴 )  ∈  ℝ )  →  ( ( ( 𝑘  +  𝑀 )  <  𝑁  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 69 | 65 62 67 68 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( ( ( 𝑘  +  𝑀 )  <  𝑁  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 70 | 69 | expd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( ( 𝑘  +  𝑀 )  <  𝑁  →  ( 𝑁  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 71 | 63 70 | sylbird | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 ) )  →  ( 𝑘  <  ( 𝑁  −  𝑀 )  →  ( 𝑁  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  <  ( 𝑁  −  𝑀 )  →  ( 𝑁  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) ) | 
						
							| 73 | 72 | com24 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0 )  →  ( 𝑁  ≤  ( ♯ ‘ 𝐴 )  →  ( 𝑘  <  ( 𝑁  −  𝑀 )  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) ) | 
						
							| 74 | 73 | 3impia | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑘  <  ( 𝑁  −  𝑀 )  →  ( ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 75 | 74 | com13 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑘  <  ( 𝑁  −  𝑀 )  →  ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 76 | 75 | impancom | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑘  <  ( 𝑁  −  𝑀 ) )  →  ( 𝑀  ∈  ℕ0  →  ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 77 | 76 | 3adant2 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ  ∧  𝑘  <  ( 𝑁  −  𝑀 ) )  →  ( 𝑀  ∈  ℕ0  →  ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 78 | 77 | com13 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ0  ∧  𝑁  ≤  ( ♯ ‘ 𝐴 ) )  →  ( 𝑀  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ  ∧  𝑘  <  ( 𝑁  −  𝑀 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 79 | 56 78 | sylbi | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  →  ( 𝑀  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ  ∧  𝑘  <  ( 𝑁  −  𝑀 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 80 | 41 79 | mpan9 | ⊢ ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ  ∧  𝑘  <  ( 𝑁  −  𝑀 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( ( 𝑘  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ  ∧  𝑘  <  ( 𝑁  −  𝑀 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 82 | 55 81 | biimtrid | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( 𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 83 | 82 | imp | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 84 |  | elfzo0 | ⊢ ( ( 𝑘  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) )  ↔  ( ( 𝑘  +  𝑀 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ( 𝑘  +  𝑀 )  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 85 | 47 54 83 84 | syl3anbrc | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝑘  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 86 |  | ccatval1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  ( 𝑘  +  𝑀 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑘  +  𝑀 ) )  =  ( 𝐴 ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 87 | 39 40 85 86 | syl3anc | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑘  +  𝑀 ) )  =  ( 𝐴 ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 88 | 25 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( 𝐴  ++  𝐵 )  ∈  Word  𝑉 ) | 
						
							| 89 |  | simplrl | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  𝑀  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 90 | 30 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐴  ++  𝐵 ) ) ) ) | 
						
							| 91 |  | simpr | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 92 |  | swrdfv | ⊢ ( ( ( ( 𝐴  ++  𝐵 )  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ ( 𝐴  ++  𝐵 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑘 )  =  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 93 | 88 89 90 91 92 | syl31anc | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑘 )  =  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 94 |  | swrdfv | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑘 )  =  ( 𝐴 ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 95 | 36 94 | sylan | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑘 )  =  ( 𝐴 ‘ ( 𝑘  +  𝑀 ) ) ) | 
						
							| 96 | 87 93 95 | 3eqtr4d | ⊢ ( ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  ∧  𝑘  ∈  ( 0 ..^ ( 𝑁  −  𝑀 ) ) )  →  ( ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑘 )  =  ( ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ‘ 𝑘 ) ) | 
						
							| 97 | 32 38 96 | eqfnfvd | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  ∧  ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) | 
						
							| 98 | 97 | ex | ⊢ ( ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  ∧  ( ♯ ‘ 𝐴 )  ≠  0 )  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 99 | 24 98 | pm2.61dane | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉 )  →  ( ( 𝑀  ∈  ( 0 ... 𝑁 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 𝑀 ,  𝑁 〉 )  =  ( 𝐴  substr  〈 𝑀 ,  𝑁 〉 ) ) ) |