| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( ( # ` A ) = 0 -> ( 0 ... ( # ` A ) ) = ( 0 ... 0 ) ) | 
						
							| 2 | 1 | eleq2d |  |-  ( ( # ` A ) = 0 -> ( N e. ( 0 ... ( # ` A ) ) <-> N e. ( 0 ... 0 ) ) ) | 
						
							| 3 |  | elfz1eq |  |-  ( N e. ( 0 ... 0 ) -> N = 0 ) | 
						
							| 4 |  | elfz1eq |  |-  ( M e. ( 0 ... 0 ) -> M = 0 ) | 
						
							| 5 |  | swrd00 |  |-  ( ( A ++ B ) substr <. 0 , 0 >. ) = (/) | 
						
							| 6 |  | swrd00 |  |-  ( A substr <. 0 , 0 >. ) = (/) | 
						
							| 7 | 5 6 | eqtr4i |  |-  ( ( A ++ B ) substr <. 0 , 0 >. ) = ( A substr <. 0 , 0 >. ) | 
						
							| 8 |  | opeq1 |  |-  ( M = 0 -> <. M , 0 >. = <. 0 , 0 >. ) | 
						
							| 9 | 8 | oveq2d |  |-  ( M = 0 -> ( ( A ++ B ) substr <. M , 0 >. ) = ( ( A ++ B ) substr <. 0 , 0 >. ) ) | 
						
							| 10 | 8 | oveq2d |  |-  ( M = 0 -> ( A substr <. M , 0 >. ) = ( A substr <. 0 , 0 >. ) ) | 
						
							| 11 | 7 9 10 | 3eqtr4a |  |-  ( M = 0 -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( M e. ( 0 ... 0 ) -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) | 
						
							| 13 |  | oveq2 |  |-  ( N = 0 -> ( 0 ... N ) = ( 0 ... 0 ) ) | 
						
							| 14 | 13 | eleq2d |  |-  ( N = 0 -> ( M e. ( 0 ... N ) <-> M e. ( 0 ... 0 ) ) ) | 
						
							| 15 |  | opeq2 |  |-  ( N = 0 -> <. M , N >. = <. M , 0 >. ) | 
						
							| 16 | 15 | oveq2d |  |-  ( N = 0 -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A ++ B ) substr <. M , 0 >. ) ) | 
						
							| 17 | 15 | oveq2d |  |-  ( N = 0 -> ( A substr <. M , N >. ) = ( A substr <. M , 0 >. ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( N = 0 -> ( ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) <-> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) ) | 
						
							| 19 | 14 18 | imbi12d |  |-  ( N = 0 -> ( ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) <-> ( M e. ( 0 ... 0 ) -> ( ( A ++ B ) substr <. M , 0 >. ) = ( A substr <. M , 0 >. ) ) ) ) | 
						
							| 20 | 12 19 | mpbiri |  |-  ( N = 0 -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) | 
						
							| 21 | 3 20 | syl |  |-  ( N e. ( 0 ... 0 ) -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) | 
						
							| 22 | 2 21 | biimtrdi |  |-  ( ( # ` A ) = 0 -> ( N e. ( 0 ... ( # ` A ) ) -> ( M e. ( 0 ... N ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) ) | 
						
							| 23 | 22 | impcomd |  |-  ( ( # ` A ) = 0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) = 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) | 
						
							| 25 |  | ccatcl |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A ++ B ) e. Word V ) | 
						
							| 27 |  | simprl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> M e. ( 0 ... N ) ) | 
						
							| 28 |  | elfzelfzccat |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( 0 ... ( # ` A ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) | 
						
							| 30 | 29 | ad2ant2rl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) | 
						
							| 31 |  | swrdvalfn |  |-  ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) | 
						
							| 32 | 26 27 30 31 | syl3anc |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) | 
						
							| 33 |  | 3anass |  |-  ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) <-> ( A e. Word V /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 34 | 33 | simplbi2 |  |-  ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) ) | 
						
							| 36 | 35 | imp |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) | 
						
							| 37 |  | swrdvalfn |  |-  ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( A substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( A substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) | 
						
							| 39 |  | simp-4l |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> A e. Word V ) | 
						
							| 40 |  | simp-4r |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> B e. Word V ) | 
						
							| 41 |  | elfznn0 |  |-  ( M e. ( 0 ... N ) -> M e. NN0 ) | 
						
							| 42 |  | nn0addcl |  |-  ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) e. NN0 ) | 
						
							| 43 | 42 | expcom |  |-  ( M e. NN0 -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) | 
						
							| 44 | 41 43 | syl |  |-  ( M e. ( 0 ... N ) -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) | 
						
							| 45 | 44 | ad2antrl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( k e. NN0 -> ( k + M ) e. NN0 ) ) | 
						
							| 46 |  | elfzonn0 |  |-  ( k e. ( 0 ..^ ( N - M ) ) -> k e. NN0 ) | 
						
							| 47 | 45 46 | impel |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) e. NN0 ) | 
						
							| 48 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 49 |  | elnnne0 |  |-  ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ ( # ` A ) =/= 0 ) ) | 
						
							| 50 | 49 | simplbi2 |  |-  ( ( # ` A ) e. NN0 -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) | 
						
							| 51 | 48 50 | syl |  |-  ( A e. Word V -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( # ` A ) e. NN ) | 
						
							| 54 | 53 | ad2antrr |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( # ` A ) e. NN ) | 
						
							| 55 |  | elfzo0 |  |-  ( k e. ( 0 ..^ ( N - M ) ) <-> ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) ) | 
						
							| 56 |  | elfz2nn0 |  |-  ( N e. ( 0 ... ( # ` A ) ) <-> ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) ) | 
						
							| 57 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 58 | 57 | ad2antrl |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> k e. RR ) | 
						
							| 59 |  | nn0re |  |-  ( M e. NN0 -> M e. RR ) | 
						
							| 60 | 59 | ad2antll |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> M e. RR ) | 
						
							| 61 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 62 | 61 | ad2antrr |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> N e. RR ) | 
						
							| 63 | 58 60 62 | ltaddsubd |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( k + M ) < N <-> k < ( N - M ) ) ) | 
						
							| 64 |  | nn0readdcl |  |-  ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) e. RR ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( k + M ) e. RR ) | 
						
							| 66 |  | nn0re |  |-  ( ( # ` A ) e. NN0 -> ( # ` A ) e. RR ) | 
						
							| 67 | 66 | ad2antlr |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( # ` A ) e. RR ) | 
						
							| 68 |  | ltletr |  |-  ( ( ( k + M ) e. RR /\ N e. RR /\ ( # ` A ) e. RR ) -> ( ( ( k + M ) < N /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) | 
						
							| 69 | 65 62 67 68 | syl3anc |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( ( k + M ) < N /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) | 
						
							| 70 | 69 | expd |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( ( k + M ) < N -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 71 | 63 70 | sylbird |  |-  ( ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) /\ ( k e. NN0 /\ M e. NN0 ) ) -> ( k < ( N - M ) -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k < ( N - M ) -> ( N <_ ( # ` A ) -> ( k + M ) < ( # ` A ) ) ) ) ) | 
						
							| 73 | 72 | com24 |  |-  ( ( N e. NN0 /\ ( # ` A ) e. NN0 ) -> ( N <_ ( # ` A ) -> ( k < ( N - M ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) < ( # ` A ) ) ) ) ) | 
						
							| 74 | 73 | 3impia |  |-  ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k < ( N - M ) -> ( ( k e. NN0 /\ M e. NN0 ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 75 | 74 | com13 |  |-  ( ( k e. NN0 /\ M e. NN0 ) -> ( k < ( N - M ) -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 76 | 75 | impancom |  |-  ( ( k e. NN0 /\ k < ( N - M ) ) -> ( M e. NN0 -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 77 | 76 | 3adant2 |  |-  ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( M e. NN0 -> ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 78 | 77 | com13 |  |-  ( ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) -> ( M e. NN0 -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 79 | 56 78 | sylbi |  |-  ( N e. ( 0 ... ( # ` A ) ) -> ( M e. NN0 -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) ) | 
						
							| 80 | 41 79 | mpan9 |  |-  ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) | 
						
							| 81 | 80 | adantl |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( k e. NN0 /\ ( N - M ) e. NN /\ k < ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) | 
						
							| 82 | 55 81 | biimtrid |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( k e. ( 0 ..^ ( N - M ) ) -> ( k + M ) < ( # ` A ) ) ) | 
						
							| 83 | 82 | imp |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) < ( # ` A ) ) | 
						
							| 84 |  | elfzo0 |  |-  ( ( k + M ) e. ( 0 ..^ ( # ` A ) ) <-> ( ( k + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( k + M ) < ( # ` A ) ) ) | 
						
							| 85 | 47 54 83 84 | syl3anbrc |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( k + M ) e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 86 |  | ccatval1 |  |-  ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( A ` ( k + M ) ) ) | 
						
							| 87 | 39 40 85 86 | syl3anc |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( A ` ( k + M ) ) ) | 
						
							| 88 | 25 | ad3antrrr |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( A ++ B ) e. Word V ) | 
						
							| 89 |  | simplrl |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> M e. ( 0 ... N ) ) | 
						
							| 90 | 30 | adantr |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) | 
						
							| 91 |  | simpr |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> k e. ( 0 ..^ ( N - M ) ) ) | 
						
							| 92 |  | swrdfv |  |-  ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) | 
						
							| 93 | 88 89 90 91 92 | syl31anc |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) | 
						
							| 94 |  | swrdfv |  |-  ( ( ( A e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A substr <. M , N >. ) ` k ) = ( A ` ( k + M ) ) ) | 
						
							| 95 | 36 94 | sylan |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( A substr <. M , N >. ) ` k ) = ( A ` ( k + M ) ) ) | 
						
							| 96 | 87 93 95 | 3eqtr4d |  |-  ( ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A substr <. M , N >. ) ` k ) ) | 
						
							| 97 | 32 38 96 | eqfnfvd |  |-  ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) | 
						
							| 98 | 97 | ex |  |-  ( ( ( A e. Word V /\ B e. Word V ) /\ ( # ` A ) =/= 0 ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) | 
						
							| 99 | 24 98 | pm2.61dane |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |