| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl |  |-  ( A e. Word V -> ( # ` A ) e. NN0 ) | 
						
							| 2 |  | lencl |  |-  ( B e. Word V -> ( # ` B ) e. NN0 ) | 
						
							| 3 |  | elfz0add |  |-  ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 5 |  | ccatlen |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( 0 ... ( # ` ( A ++ B ) ) ) = ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 8 | 4 7 | sylibrd |  |-  ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` A ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |