Metamath Proof Explorer


Theorem elfzelfzccat

Description: An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018)

Ref Expression
Assertion elfzelfzccat ( ( 𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lencl ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
2 lencl ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
3 elfz0add ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) )
5 ccatlen ( ( 𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) )
6 5 oveq2d ( ( 𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ) → ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) )
7 6 eleq2d ( ( 𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ↔ 𝑁 ∈ ( 0 ... ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) )
8 4 7 sylibrd ( ( 𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) )