| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelxp |  |-  ( <. S , <. X , X >. >. e. ( _V X. ( ZZ X. ZZ ) ) <-> ( S e. _V /\ <. X , X >. e. ( ZZ X. ZZ ) ) ) | 
						
							| 2 |  | opelxp |  |-  ( <. X , X >. e. ( ZZ X. ZZ ) <-> ( X e. ZZ /\ X e. ZZ ) ) | 
						
							| 3 |  | swrdval |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> ( S substr <. X , X >. ) = if ( ( X ..^ X ) C_ dom S , ( x e. ( 0 ..^ ( X - X ) ) |-> ( S ` ( x + X ) ) ) , (/) ) ) | 
						
							| 4 |  | fzo0 |  |-  ( X ..^ X ) = (/) | 
						
							| 5 |  | 0ss |  |-  (/) C_ dom S | 
						
							| 6 | 4 5 | eqsstri |  |-  ( X ..^ X ) C_ dom S | 
						
							| 7 | 6 | iftruei |  |-  if ( ( X ..^ X ) C_ dom S , ( x e. ( 0 ..^ ( X - X ) ) |-> ( S ` ( x + X ) ) ) , (/) ) = ( x e. ( 0 ..^ ( X - X ) ) |-> ( S ` ( x + X ) ) ) | 
						
							| 8 |  | zcn |  |-  ( X e. ZZ -> X e. CC ) | 
						
							| 9 | 8 | subidd |  |-  ( X e. ZZ -> ( X - X ) = 0 ) | 
						
							| 10 | 9 | oveq2d |  |-  ( X e. ZZ -> ( 0 ..^ ( X - X ) ) = ( 0 ..^ 0 ) ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> ( 0 ..^ ( X - X ) ) = ( 0 ..^ 0 ) ) | 
						
							| 12 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> ( 0 ..^ ( X - X ) ) = (/) ) | 
						
							| 14 | 13 | mpteq1d |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> ( x e. ( 0 ..^ ( X - X ) ) |-> ( S ` ( x + X ) ) ) = ( x e. (/) |-> ( S ` ( x + X ) ) ) ) | 
						
							| 15 |  | mpt0 |  |-  ( x e. (/) |-> ( S ` ( x + X ) ) ) = (/) | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> ( x e. ( 0 ..^ ( X - X ) ) |-> ( S ` ( x + X ) ) ) = (/) ) | 
						
							| 17 | 7 16 | eqtrid |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> if ( ( X ..^ X ) C_ dom S , ( x e. ( 0 ..^ ( X - X ) ) |-> ( S ` ( x + X ) ) ) , (/) ) = (/) ) | 
						
							| 18 | 3 17 | eqtrd |  |-  ( ( S e. _V /\ X e. ZZ /\ X e. ZZ ) -> ( S substr <. X , X >. ) = (/) ) | 
						
							| 19 | 18 | 3expb |  |-  ( ( S e. _V /\ ( X e. ZZ /\ X e. ZZ ) ) -> ( S substr <. X , X >. ) = (/) ) | 
						
							| 20 | 2 19 | sylan2b |  |-  ( ( S e. _V /\ <. X , X >. e. ( ZZ X. ZZ ) ) -> ( S substr <. X , X >. ) = (/) ) | 
						
							| 21 | 1 20 | sylbi |  |-  ( <. S , <. X , X >. >. e. ( _V X. ( ZZ X. ZZ ) ) -> ( S substr <. X , X >. ) = (/) ) | 
						
							| 22 |  | df-substr |  |-  substr = ( s e. _V , b e. ( ZZ X. ZZ ) |-> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) ) | 
						
							| 23 |  | ovex |  |-  ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) e. _V | 
						
							| 24 | 23 | mptex |  |-  ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) e. _V | 
						
							| 25 |  | 0ex |  |-  (/) e. _V | 
						
							| 26 | 24 25 | ifex |  |-  if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) e. _V | 
						
							| 27 | 22 26 | dmmpo |  |-  dom substr = ( _V X. ( ZZ X. ZZ ) ) | 
						
							| 28 | 21 27 | eleq2s |  |-  ( <. S , <. X , X >. >. e. dom substr -> ( S substr <. X , X >. ) = (/) ) | 
						
							| 29 |  | df-ov |  |-  ( S substr <. X , X >. ) = ( substr ` <. S , <. X , X >. >. ) | 
						
							| 30 |  | ndmfv |  |-  ( -. <. S , <. X , X >. >. e. dom substr -> ( substr ` <. S , <. X , X >. >. ) = (/) ) | 
						
							| 31 | 29 30 | eqtrid |  |-  ( -. <. S , <. X , X >. >. e. dom substr -> ( S substr <. X , X >. ) = (/) ) | 
						
							| 32 | 28 31 | pm2.61i |  |-  ( S substr <. X , X >. ) = (/) |