Metamath Proof Explorer


Theorem swrd00

Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion swrd00 SsubstrXX=

Proof

Step Hyp Ref Expression
1 opelxp SXXV××SVXX×
2 opelxp XX×XX
3 swrdval SVXXSsubstrXX=ifX..^XdomSx0..^XXSx+X
4 fzo0 X..^X=
5 0ss domS
6 4 5 eqsstri X..^XdomS
7 6 iftruei ifX..^XdomSx0..^XXSx+X=x0..^XXSx+X
8 zcn XX
9 8 subidd XXX=0
10 9 oveq2d X0..^XX=0..^0
11 10 3ad2ant2 SVXX0..^XX=0..^0
12 fzo0 0..^0=
13 11 12 eqtrdi SVXX0..^XX=
14 13 mpteq1d SVXXx0..^XXSx+X=xSx+X
15 mpt0 xSx+X=
16 14 15 eqtrdi SVXXx0..^XXSx+X=
17 7 16 eqtrid SVXXifX..^XdomSx0..^XXSx+X=
18 3 17 eqtrd SVXXSsubstrXX=
19 18 3expb SVXXSsubstrXX=
20 2 19 sylan2b SVXX×SsubstrXX=
21 1 20 sylbi SXXV××SsubstrXX=
22 df-substr substr=sV,b×if1stb..^2ndbdomsx0..^2ndb1stbsx+1stb
23 ovex 0..^2ndb1stbV
24 23 mptex x0..^2ndb1stbsx+1stbV
25 0ex V
26 24 25 ifex if1stb..^2ndbdomsx0..^2ndb1stbsx+1stbV
27 22 26 dmmpo domsubstr=V××
28 21 27 eleq2s SXXdomsubstrSsubstrXX=
29 df-ov SsubstrXX=substrSXX
30 ndmfv ¬SXXdomsubstrsubstrSXX=
31 29 30 eqtrid ¬SXXdomsubstrSsubstrXX=
32 28 31 pm2.61i SsubstrXX=