| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelxp | ⊢ ( 〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉  ∈  ( V  ×  ( ℤ  ×  ℤ ) )  ↔  ( 𝑆  ∈  V  ∧  〈 𝑋 ,  𝑋 〉  ∈  ( ℤ  ×  ℤ ) ) ) | 
						
							| 2 |  | opelxp | ⊢ ( 〈 𝑋 ,  𝑋 〉  ∈  ( ℤ  ×  ℤ )  ↔  ( 𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ ) ) | 
						
							| 3 |  | swrdval | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  if ( ( 𝑋 ..^ 𝑋 )  ⊆  dom  𝑆 ,  ( 𝑥  ∈  ( 0 ..^ ( 𝑋  −  𝑋 ) )  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) ) ,  ∅ ) ) | 
						
							| 4 |  | fzo0 | ⊢ ( 𝑋 ..^ 𝑋 )  =  ∅ | 
						
							| 5 |  | 0ss | ⊢ ∅  ⊆  dom  𝑆 | 
						
							| 6 | 4 5 | eqsstri | ⊢ ( 𝑋 ..^ 𝑋 )  ⊆  dom  𝑆 | 
						
							| 7 | 6 | iftruei | ⊢ if ( ( 𝑋 ..^ 𝑋 )  ⊆  dom  𝑆 ,  ( 𝑥  ∈  ( 0 ..^ ( 𝑋  −  𝑋 ) )  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) ) ,  ∅ )  =  ( 𝑥  ∈  ( 0 ..^ ( 𝑋  −  𝑋 ) )  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) ) | 
						
							| 8 |  | zcn | ⊢ ( 𝑋  ∈  ℤ  →  𝑋  ∈  ℂ ) | 
						
							| 9 | 8 | subidd | ⊢ ( 𝑋  ∈  ℤ  →  ( 𝑋  −  𝑋 )  =  0 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑋  ∈  ℤ  →  ( 0 ..^ ( 𝑋  −  𝑋 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 0 ..^ ( 𝑋  −  𝑋 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 12 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 0 ..^ ( 𝑋  −  𝑋 ) )  =  ∅ ) | 
						
							| 14 | 13 | mpteq1d | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 𝑥  ∈  ( 0 ..^ ( 𝑋  −  𝑋 ) )  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) )  =  ( 𝑥  ∈  ∅  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) ) ) | 
						
							| 15 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) )  =  ∅ | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 𝑥  ∈  ( 0 ..^ ( 𝑋  −  𝑋 ) )  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) )  =  ∅ ) | 
						
							| 17 | 7 16 | eqtrid | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  if ( ( 𝑋 ..^ 𝑋 )  ⊆  dom  𝑆 ,  ( 𝑥  ∈  ( 0 ..^ ( 𝑋  −  𝑋 ) )  ↦  ( 𝑆 ‘ ( 𝑥  +  𝑋 ) ) ) ,  ∅ )  =  ∅ ) | 
						
							| 18 | 3 17 | eqtrd | ⊢ ( ( 𝑆  ∈  V  ∧  𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ ) | 
						
							| 19 | 18 | 3expb | ⊢ ( ( 𝑆  ∈  V  ∧  ( 𝑋  ∈  ℤ  ∧  𝑋  ∈  ℤ ) )  →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ ) | 
						
							| 20 | 2 19 | sylan2b | ⊢ ( ( 𝑆  ∈  V  ∧  〈 𝑋 ,  𝑋 〉  ∈  ( ℤ  ×  ℤ ) )  →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ ) | 
						
							| 21 | 1 20 | sylbi | ⊢ ( 〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉  ∈  ( V  ×  ( ℤ  ×  ℤ ) )  →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ ) | 
						
							| 22 |  | df-substr | ⊢  substr   =  ( 𝑠  ∈  V ,  𝑏  ∈  ( ℤ  ×  ℤ )  ↦  if ( ( ( 1st  ‘ 𝑏 ) ..^ ( 2nd  ‘ 𝑏 ) )  ⊆  dom  𝑠 ,  ( 𝑥  ∈  ( 0 ..^ ( ( 2nd  ‘ 𝑏 )  −  ( 1st  ‘ 𝑏 ) ) )  ↦  ( 𝑠 ‘ ( 𝑥  +  ( 1st  ‘ 𝑏 ) ) ) ) ,  ∅ ) ) | 
						
							| 23 |  | ovex | ⊢ ( 0 ..^ ( ( 2nd  ‘ 𝑏 )  −  ( 1st  ‘ 𝑏 ) ) )  ∈  V | 
						
							| 24 | 23 | mptex | ⊢ ( 𝑥  ∈  ( 0 ..^ ( ( 2nd  ‘ 𝑏 )  −  ( 1st  ‘ 𝑏 ) ) )  ↦  ( 𝑠 ‘ ( 𝑥  +  ( 1st  ‘ 𝑏 ) ) ) )  ∈  V | 
						
							| 25 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 26 | 24 25 | ifex | ⊢ if ( ( ( 1st  ‘ 𝑏 ) ..^ ( 2nd  ‘ 𝑏 ) )  ⊆  dom  𝑠 ,  ( 𝑥  ∈  ( 0 ..^ ( ( 2nd  ‘ 𝑏 )  −  ( 1st  ‘ 𝑏 ) ) )  ↦  ( 𝑠 ‘ ( 𝑥  +  ( 1st  ‘ 𝑏 ) ) ) ) ,  ∅ )  ∈  V | 
						
							| 27 | 22 26 | dmmpo | ⊢ dom   substr   =  ( V  ×  ( ℤ  ×  ℤ ) ) | 
						
							| 28 | 21 27 | eleq2s | ⊢ ( 〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉  ∈  dom   substr   →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ ) | 
						
							| 29 |  | df-ov | ⊢ ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  (  substr  ‘ 〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉 ) | 
						
							| 30 |  | ndmfv | ⊢ ( ¬  〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉  ∈  dom   substr   →  (  substr  ‘ 〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉 )  =  ∅ ) | 
						
							| 31 | 29 30 | eqtrid | ⊢ ( ¬  〈 𝑆 ,  〈 𝑋 ,  𝑋 〉 〉  ∈  dom   substr   →  ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ ) | 
						
							| 32 | 28 31 | pm2.61i | ⊢ ( 𝑆  substr  〈 𝑋 ,  𝑋 〉 )  =  ∅ |