| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 2 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐴 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝐴 )  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐴 )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  ↔  ( ♯ ‘ 𝐴 )  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) )  ↔  ( ♯ ‘ 𝐴 )  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 4 6 | mpbird | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐴 ) | 
						
							| 9 | 8 | pfxccatpfx1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( 𝐴  prefix  𝑁 ) ) | 
						
							| 10 | 7 9 | syld3an3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  ( 𝐴  prefix  𝑁 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝐴 )  →  ( 𝐴  prefix  𝑁 )  =  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  ( 𝐴  prefix  𝑁 )  =  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 13 |  | pfxid | ⊢ ( 𝐴  ∈  Word  𝑉  →  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  ( 𝐴  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 15 | 10 12 14 | 3eqtrd | ⊢ ( ( 𝐴  ∈  Word  𝑉  ∧  𝐵  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝐴 ) )  →  ( ( 𝐴  ++  𝐵 )  prefix  𝑁 )  =  𝐴 ) |