| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | oveq1 |  |-  ( x = u -> ( x prefix ( N - 2 ) ) = ( u prefix ( N - 2 ) ) ) | 
						
							| 5 |  | fveq1 |  |-  ( x = u -> ( x ` ( N - 1 ) ) = ( u ` ( N - 1 ) ) ) | 
						
							| 6 | 4 5 | opeq12d |  |-  ( x = u -> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. = <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 7 | 6 | cbvmptv |  |-  ( x e. ( X C N ) |-> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. ) = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) | 
						
							| 8 | 1 2 3 7 | numclwwlk1lem2f1o |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( x e. ( X C N ) |-> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. ) : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 9 |  | ovex |  |-  ( X C N ) e. _V | 
						
							| 10 | 9 | f1oen |  |-  ( ( x e. ( X C N ) |-> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. ) : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) |