| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | extwwlkfab.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 3 |  | extwwlkfab.f |  |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 4 |  | rusgrusgr |  |-  ( G RegUSGraph K -> G e. USGraph ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. USGraph ) | 
						
							| 6 |  | simprl |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) | 
						
							| 7 |  | simprr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> N e. ( ZZ>= ` 3 ) ) | 
						
							| 8 | 1 2 3 | numclwwlk1lem2 |  |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 9 | 5 6 7 8 | syl3anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) | 
						
							| 10 |  | hasheni |  |-  ( ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) -> ( # ` ( X C N ) ) = ( # ` ( F X. ( G NeighbVtx X ) ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X C N ) ) = ( # ` ( F X. ( G NeighbVtx X ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 13 | 12 | clwwlknonfin |  |-  ( ( Vtx ` G ) e. Fin -> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) | 
						
							| 14 | 1 | eleq1i |  |-  ( V e. Fin <-> ( Vtx ` G ) e. Fin ) | 
						
							| 15 | 3 | eleq1i |  |-  ( F e. Fin <-> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) | 
						
							| 16 | 13 14 15 | 3imtr4i |  |-  ( V e. Fin -> F e. Fin ) | 
						
							| 17 | 16 | adantr |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> F e. Fin ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> F e. Fin ) | 
						
							| 19 | 1 | finrusgrfusgr |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 20 | 19 | ancoms |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> G e. FinUSGraph ) | 
						
							| 21 |  | fusgrfis |  |-  ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> ( Edg ` G ) e. Fin ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( Edg ` G ) e. Fin ) | 
						
							| 24 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 25 | 1 24 | nbusgrfi |  |-  ( ( G e. USGraph /\ ( Edg ` G ) e. Fin /\ X e. V ) -> ( G NeighbVtx X ) e. Fin ) | 
						
							| 26 | 5 23 6 25 | syl3anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( G NeighbVtx X ) e. Fin ) | 
						
							| 27 |  | hashxp |  |-  ( ( F e. Fin /\ ( G NeighbVtx X ) e. Fin ) -> ( # ` ( F X. ( G NeighbVtx X ) ) ) = ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) ) | 
						
							| 28 | 18 26 27 | syl2anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( F X. ( G NeighbVtx X ) ) ) = ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) ) | 
						
							| 29 | 1 | rusgrpropnb |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. x e. V ( # ` ( G NeighbVtx x ) ) = K ) ) | 
						
							| 30 |  | oveq2 |  |-  ( x = X -> ( G NeighbVtx x ) = ( G NeighbVtx X ) ) | 
						
							| 31 | 30 | fveqeq2d |  |-  ( x = X -> ( ( # ` ( G NeighbVtx x ) ) = K <-> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 32 | 31 | rspccv |  |-  ( A. x e. V ( # ` ( G NeighbVtx x ) ) = K -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 33 | 32 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. x e. V ( # ` ( G NeighbVtx x ) ) = K ) -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 34 | 29 33 | syl |  |-  ( G RegUSGraph K -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 36 | 35 | com12 |  |-  ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` ( G NeighbVtx X ) ) = K ) ) | 
						
							| 38 | 37 | impcom |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( G NeighbVtx X ) ) = K ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) = ( ( # ` F ) x. K ) ) | 
						
							| 40 |  | hashcl |  |-  ( F e. Fin -> ( # ` F ) e. NN0 ) | 
						
							| 41 |  | nn0cn |  |-  ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC ) | 
						
							| 42 | 18 40 41 | 3syl |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` F ) e. CC ) | 
						
							| 43 | 20 | adantr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. FinUSGraph ) | 
						
							| 44 |  | simplr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G RegUSGraph K ) | 
						
							| 45 |  | ne0i |  |-  ( X e. V -> V =/= (/) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> V =/= (/) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> V =/= (/) ) | 
						
							| 48 | 1 | frusgrnn0 |  |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) | 
						
							| 49 | 43 44 47 48 | syl3anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> K e. NN0 ) | 
						
							| 50 | 49 | nn0cnd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> K e. CC ) | 
						
							| 51 | 42 50 | mulcomd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) x. K ) = ( K x. ( # ` F ) ) ) | 
						
							| 52 | 39 51 | eqtrd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) = ( K x. ( # ` F ) ) ) | 
						
							| 53 | 11 28 52 | 3eqtrd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X C N ) ) = ( K x. ( # ` F ) ) ) |