| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwlk1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwlk1.c |  |-  C = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } | 
						
							| 3 |  | numclwlk1.f |  |-  F = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } | 
						
							| 4 |  | uzp1 |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N = 2 \/ N e. ( ZZ>= ` ( 2 + 1 ) ) ) ) | 
						
							| 5 | 1 2 3 | numclwlk1lem1 |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N = 2 ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) | 
						
							| 6 | 5 | expcom |  |-  ( ( X e. V /\ N = 2 ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) | 
						
							| 7 | 6 | expcom |  |-  ( N = 2 -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) | 
						
							| 8 | 1 2 3 | numclwlk1lem2 |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) | 
						
							| 9 | 8 | expcom |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) | 
						
							| 10 | 9 | expcom |  |-  ( N e. ( ZZ>= ` 3 ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) | 
						
							| 11 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 12 | 11 | fveq2i |  |-  ( ZZ>= ` ( 2 + 1 ) ) = ( ZZ>= ` 3 ) | 
						
							| 13 | 10 12 | eleq2s |  |-  ( N e. ( ZZ>= ` ( 2 + 1 ) ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) | 
						
							| 14 | 7 13 | jaoi |  |-  ( ( N = 2 \/ N e. ( ZZ>= ` ( 2 + 1 ) ) ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) | 
						
							| 15 | 4 14 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) | 
						
							| 16 | 15 | impcom |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 2 ) ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) |