| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwlk1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwlk1.c | ⊢ 𝐶  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ ( 𝑁  −  2 ) )  =  𝑋 ) } | 
						
							| 3 |  | numclwlk1.f | ⊢ 𝐹  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) } | 
						
							| 4 |  | uzp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  =  2  ∨  𝑁  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) ) ) | 
						
							| 5 | 1 2 3 | numclwlk1lem1 | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  =  2 ) )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 6 | 5 | expcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  =  2 )  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 7 | 6 | expcom | ⊢ ( 𝑁  =  2  →  ( 𝑋  ∈  𝑉  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 8 | 1 2 3 | numclwlk1lem2 | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 9 | 8 | expcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 10 | 9 | expcom | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑋  ∈  𝑉  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 11 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 12 | 11 | fveq2i | ⊢ ( ℤ≥ ‘ ( 2  +  1 ) )  =  ( ℤ≥ ‘ 3 ) | 
						
							| 13 | 10 12 | eleq2s | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 2  +  1 ) )  →  ( 𝑋  ∈  𝑉  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 14 | 7 13 | jaoi | ⊢ ( ( 𝑁  =  2  ∨  𝑁  ∈  ( ℤ≥ ‘ ( 2  +  1 ) ) )  →  ( 𝑋  ∈  𝑉  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑋  ∈  𝑉  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 16 | 15 | impcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) |