Step |
Hyp |
Ref |
Expression |
1 |
|
numclwlk1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
numclwlk1.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 𝑁 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ∧ ( ( 2nd ‘ 𝑤 ) ‘ ( 𝑁 − 2 ) ) = 𝑋 ) } |
3 |
|
numclwlk1.f |
⊢ 𝐹 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑁 − 2 ) ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } |
4 |
|
uzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 = 2 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) ) |
5 |
1 2 3
|
numclwlk1lem1 |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 = 2 ) ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |
6 |
5
|
expcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 = 2 ) → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) |
7 |
6
|
expcom |
⊢ ( 𝑁 = 2 → ( 𝑋 ∈ 𝑉 → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) ) |
8 |
1 2 3
|
numclwlk1lem2 |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |
9 |
8
|
expcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) |
10 |
9
|
expcom |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑋 ∈ 𝑉 → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) ) |
11 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
12 |
11
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 2 + 1 ) ) = ( ℤ≥ ‘ 3 ) |
13 |
10 12
|
eleq2s |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) → ( 𝑋 ∈ 𝑉 → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) ) |
14 |
7 13
|
jaoi |
⊢ ( ( 𝑁 = 2 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 2 + 1 ) ) ) → ( 𝑋 ∈ 𝑉 → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) ) |
15 |
4 14
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑋 ∈ 𝑉 → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) ) |
16 |
15
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) ) |
17 |
16
|
impcom |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( ♯ ‘ 𝐶 ) = ( 𝐾 · ( ♯ ‘ 𝐹 ) ) ) |