| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwlk1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwlk1.c | ⊢ 𝐶  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ ( 𝑁  −  2 ) )  =  𝑋 ) } | 
						
							| 3 |  | numclwlk1.f | ⊢ 𝐹  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) } | 
						
							| 4 |  | rusgrusgr | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USGraph ) | 
						
							| 5 |  | usgruspgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  USPGraph ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USPGraph ) | 
						
							| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐺  ∈  USPGraph ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | uzuzle23 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 11 | 10 | ad2antll | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 12 |  | eqid | ⊢ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } | 
						
							| 13 | 1 2 12 | dlwwlknondlwlknonen | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  𝐶  ≈  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) | 
						
							| 14 | 7 9 11 13 | syl3anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐶  ≈  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) | 
						
							| 15 | 4 | anim2i | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝑉  ∈  Fin  ∧  𝐺  ∈  USGraph ) ) | 
						
							| 16 | 15 | ancomd | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 17 | 1 | isfusgr | ⊢ ( 𝐺  ∈  FinUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 19 |  | eluzge3nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ ) | 
						
							| 20 | 19 | nnnn0d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 22 |  | wlksnfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ0 )  →  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁 }  ∈  Fin ) | 
						
							| 23 | 18 21 22 | syl2an | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁 }  ∈  Fin ) | 
						
							| 24 |  | clwlkswks | ⊢ ( ClWalks ‘ 𝐺 )  ⊆  ( Walks ‘ 𝐺 ) | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ClWalks ‘ 𝐺 )  ⊆  ( Walks ‘ 𝐺 ) ) | 
						
							| 26 |  | simp21 | ⊢ ( ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ ( 𝑁  −  2 ) )  =  𝑋 )  ∧  𝑤  ∈  ( ClWalks ‘ 𝐺 ) )  →  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁 ) | 
						
							| 27 | 25 26 | rabssrabd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ ( 𝑁  −  2 ) )  =  𝑋 ) }  ⊆  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁 } ) | 
						
							| 28 | 23 27 | ssfid | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ ( 𝑁  −  2 ) )  =  𝑋 ) }  ∈  Fin ) | 
						
							| 29 | 2 28 | eqeltrid | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐶  ∈  Fin ) | 
						
							| 30 | 1 | clwwlknonfin | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) | 
						
							| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) | 
						
							| 32 |  | ssrab2 | ⊢ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  ⊆  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) | 
						
							| 33 | 32 | a1i | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  ⊆  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 34 | 31 33 | ssfid | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  ∈  Fin ) | 
						
							| 35 |  | hashen | ⊢ ( ( 𝐶  ∈  Fin  ∧  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  ∈  Fin )  →  ( ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } )  ↔  𝐶  ≈  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) ) | 
						
							| 36 | 29 34 35 | syl2anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } )  ↔  𝐶  ≈  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) ) | 
						
							| 37 | 14 36 | mpbird | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) ) | 
						
							| 38 |  | eqidd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } )  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) ) | 
						
							| 39 |  | oveq12 | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 40 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  ( 𝑤 ‘ ( 𝑁  −  2 ) ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  ( 𝑤 ‘ ( 𝑁  −  2 ) ) ) | 
						
							| 42 |  | simpl | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  𝑣  =  𝑋 ) | 
						
							| 43 | 41 42 | eqeq12d | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣  ↔  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 ) ) | 
						
							| 44 | 39 43 | rabeqbidv | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 }  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  ∧  ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 ) )  →  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 }  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) | 
						
							| 46 |  | ovex | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  V | 
						
							| 47 | 46 | rabex | ⊢ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 }  ∈  V ) | 
						
							| 49 | 38 45 9 11 48 | ovmpod | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝑋 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) 𝑁 )  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝑋 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) 𝑁 ) )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } ) ) | 
						
							| 51 |  | eqid | ⊢ ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } )  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) | 
						
							| 52 |  | eqid | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) | 
						
							| 53 | 1 51 52 | numclwwlk1 | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝑋 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) 𝑁 ) )  =  ( 𝐾  ·  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) ) ) | 
						
							| 54 | 8 1 | eleqtrdi | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 56 |  | uz3m2nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑁  −  2 )  ∈  ℕ ) | 
						
							| 57 | 56 | ad2antll | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝑁  −  2 )  ∈  ℕ ) | 
						
							| 58 |  | clwwlknonclwlknonen | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  −  2 )  ∈  ℕ )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) | 
						
							| 59 | 7 55 57 58 | syl3anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) | 
						
							| 60 | 3 59 | eqbrtrid | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐹  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) | 
						
							| 61 |  | uznn0sub | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  −  2 )  ∈  ℕ0 ) | 
						
							| 62 | 10 61 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑁  −  2 )  ∈  ℕ0 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑁  −  2 )  ∈  ℕ0 ) | 
						
							| 64 |  | wlksnfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  ( 𝑁  −  2 )  ∈  ℕ0 )  →  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 ) }  ∈  Fin ) | 
						
							| 65 | 18 63 64 | syl2an | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 ) }  ∈  Fin ) | 
						
							| 66 |  | simp2l | ⊢ ( ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  ∧  𝑤  ∈  ( ClWalks ‘ 𝐺 ) )  →  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 ) ) | 
						
							| 67 | 25 66 | rabssrabd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ⊆  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 ) } ) | 
						
							| 68 | 65 67 | ssfid | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( 𝑁  −  2 )  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ∈  Fin ) | 
						
							| 69 | 3 68 | eqeltrid | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐹  ∈  Fin ) | 
						
							| 70 | 1 | clwwlknonfin | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) )  ∈  Fin ) | 
						
							| 71 | 70 | ad2antrr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) )  ∈  Fin ) | 
						
							| 72 |  | hashen | ⊢ ( ( 𝐹  ∈  Fin  ∧  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) )  ↔  𝐹  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) ) | 
						
							| 73 | 69 71 72 | syl2anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) )  ↔  𝐹  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) ) | 
						
							| 74 | 60 73 | mpbird | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) ) | 
						
							| 75 | 74 | eqcomd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝐾  ·  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) ) )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 77 | 53 76 | eqtrd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝑋 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) 𝑁 ) )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 78 | 37 50 77 | 3eqtr2d | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ 𝐶 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) |