| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | extwwlkfab.c | ⊢ 𝐶  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ( ℤ≥ ‘ 2 )  ↦  { 𝑤  ∈  ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 )  ∣  ( 𝑤 ‘ ( 𝑛  −  2 ) )  =  𝑣 } ) | 
						
							| 3 |  | extwwlkfab.f | ⊢ 𝐹  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) ) | 
						
							| 4 |  | rusgrusgr | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USGraph ) | 
						
							| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐺  ∈  USGraph ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 8 | 1 2 3 | numclwwlk1lem2 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑋 𝐶 𝑁 )  ≈  ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝑋 𝐶 𝑁 )  ≈  ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 10 |  | hasheni | ⊢ ( ( 𝑋 𝐶 𝑁 )  ≈  ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) )  →  ( ♯ ‘ ( 𝑋 𝐶 𝑁 ) )  =  ( ♯ ‘ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝑋 𝐶 𝑁 ) )  =  ( ♯ ‘ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 13 | 12 | clwwlknonfin | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) )  ∈  Fin ) | 
						
							| 14 | 1 | eleq1i | ⊢ ( 𝑉  ∈  Fin  ↔  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 15 | 3 | eleq1i | ⊢ ( 𝐹  ∈  Fin  ↔  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑁  −  2 ) )  ∈  Fin ) | 
						
							| 16 | 13 14 15 | 3imtr4i | ⊢ ( 𝑉  ∈  Fin  →  𝐹  ∈  Fin ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐹  ∈  Fin ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐹  ∈  Fin ) | 
						
							| 19 | 1 | finrusgrfusgr | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 20 | 19 | ancoms | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 21 |  | fusgrfis | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( Edg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( Edg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( Edg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 24 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 25 | 1 24 | nbusgrfi | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( Edg ‘ 𝐺 )  ∈  Fin  ∧  𝑋  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑋 )  ∈  Fin ) | 
						
							| 26 | 5 23 6 25 | syl3anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( 𝐺  NeighbVtx  𝑋 )  ∈  Fin ) | 
						
							| 27 |  | hashxp | ⊢ ( ( 𝐹  ∈  Fin  ∧  ( 𝐺  NeighbVtx  𝑋 )  ∈  Fin )  →  ( ♯ ‘ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) )  =  ( ( ♯ ‘ 𝐹 )  ·  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) ) ) ) | 
						
							| 28 | 18 26 27 | syl2anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝐹  ×  ( 𝐺  NeighbVtx  𝑋 ) ) )  =  ( ( ♯ ‘ 𝐹 )  ·  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) ) ) ) | 
						
							| 29 | 1 | rusgrpropnb | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  𝐾 ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐺  NeighbVtx  𝑥 )  =  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 31 | 30 | fveqeq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  𝐾  ↔  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 32 | 31 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  𝐾  →  ( 𝑋  ∈  𝑉  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  𝐾 )  →  ( 𝑋  ∈  𝑉  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 34 | 29 33 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝑋  ∈  𝑉  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝑋  ∈  𝑉  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) ) | 
						
							| 38 | 37 | impcom | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) )  =  𝐾 ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ·  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) ) )  =  ( ( ♯ ‘ 𝐹 )  ·  𝐾 ) ) | 
						
							| 40 |  | hashcl | ⊢ ( 𝐹  ∈  Fin  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 41 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 42 | 18 40 41 | 3syl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 43 | 20 | adantr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 45 |  | ne0i | ⊢ ( 𝑋  ∈  𝑉  →  𝑉  ≠  ∅ ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑉  ≠  ∅ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝑉  ≠  ∅ ) | 
						
							| 48 | 1 | frusgrnn0 | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑉  ≠  ∅ )  →  𝐾  ∈  ℕ0 ) | 
						
							| 49 | 43 44 47 48 | syl3anc | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 50 | 49 | nn0cnd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  𝐾  ∈  ℂ ) | 
						
							| 51 | 42 50 | mulcomd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ·  𝐾 )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 52 | 39 51 | eqtrd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ( ♯ ‘ 𝐹 )  ·  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑋 ) ) )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 53 | 11 28 52 | 3eqtrd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 3 ) ) )  →  ( ♯ ‘ ( 𝑋 𝐶 𝑁 ) )  =  ( 𝐾  ·  ( ♯ ‘ 𝐹 ) ) ) |