| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extwwlkfab.v |  | 
						
							| 2 |  | extwwlkfab.c |  | 
						
							| 3 |  | extwwlkfab.f |  | 
						
							| 4 |  | rusgrusgr |  | 
						
							| 5 | 4 | ad2antlr |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | simprr |  | 
						
							| 8 | 1 2 3 | numclwwlk1lem2 |  | 
						
							| 9 | 5 6 7 8 | syl3anc |  | 
						
							| 10 |  | hasheni |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 | clwwlknonfin |  | 
						
							| 14 | 1 | eleq1i |  | 
						
							| 15 | 3 | eleq1i |  | 
						
							| 16 | 13 14 15 | 3imtr4i |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 1 | finrusgrfusgr |  | 
						
							| 20 | 19 | ancoms |  | 
						
							| 21 |  | fusgrfis |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 1 24 | nbusgrfi |  | 
						
							| 26 | 5 23 6 25 | syl3anc |  | 
						
							| 27 |  | hashxp |  | 
						
							| 28 | 18 26 27 | syl2anc |  | 
						
							| 29 | 1 | rusgrpropnb |  | 
						
							| 30 |  | oveq2 |  | 
						
							| 31 | 30 | fveqeq2d |  | 
						
							| 32 | 31 | rspccv |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 | 29 33 | syl |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 | 35 | com12 |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 37 | impcom |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 |  | hashcl |  | 
						
							| 41 |  | nn0cn |  | 
						
							| 42 | 18 40 41 | 3syl |  | 
						
							| 43 | 20 | adantr |  | 
						
							| 44 |  | simplr |  | 
						
							| 45 |  | ne0i |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 1 | frusgrnn0 |  | 
						
							| 49 | 43 44 47 48 | syl3anc |  | 
						
							| 50 | 49 | nn0cnd |  | 
						
							| 51 | 42 50 | mulcomd |  | 
						
							| 52 | 39 51 | eqtrd |  | 
						
							| 53 | 11 28 52 | 3eqtrd |  |