Metamath Proof Explorer


Theorem clwwlknonclwlknonf1o

Description: F is a bijection between the two representations of closed walks of a fixed positive length on a fixed vertex. (Contributed by AV, 26-May-2022) (Proof shortened by AV, 7-Aug-2022) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses clwwlknonclwlknonf1o.v V = Vtx G
clwwlknonclwlknonf1o.w W = w ClWalks G | 1 st w = N 2 nd w 0 = X
clwwlknonclwlknonf1o.f F = c W 2 nd c prefix 1 st c
Assertion clwwlknonclwlknonf1o G USHGraph X V N F : W 1-1 onto X ClWWalksNOn G N

Proof

Step Hyp Ref Expression
1 clwwlknonclwlknonf1o.v V = Vtx G
2 clwwlknonclwlknonf1o.w W = w ClWalks G | 1 st w = N 2 nd w 0 = X
3 clwwlknonclwlknonf1o.f F = c W 2 nd c prefix 1 st c
4 eqid w ClWalks G | 1 st w = N = w ClWalks G | 1 st w = N
5 eqid c w ClWalks G | 1 st w = N 2 nd c prefix 1 st c = c w ClWalks G | 1 st w = N 2 nd c prefix 1 st c
6 eqid 1 st c = 1 st c
7 eqid 2 nd c = 2 nd c
8 6 7 4 5 clwlknf1oclwwlkn G USHGraph N c w ClWalks G | 1 st w = N 2 nd c prefix 1 st c : w ClWalks G | 1 st w = N 1-1 onto N ClWWalksN G
9 8 3adant2 G USHGraph X V N c w ClWalks G | 1 st w = N 2 nd c prefix 1 st c : w ClWalks G | 1 st w = N 1-1 onto N ClWWalksN G
10 fveq1 s = 2 nd c prefix 1 st c s 0 = 2 nd c prefix 1 st c 0
11 10 3ad2ant3 G USHGraph X V N c w ClWalks G | 1 st w = N s = 2 nd c prefix 1 st c s 0 = 2 nd c prefix 1 st c 0
12 2fveq3 w = c 1 st w = 1 st c
13 12 eqeq1d w = c 1 st w = N 1 st c = N
14 13 elrab c w ClWalks G | 1 st w = N c ClWalks G 1 st c = N
15 clwlkwlk c ClWalks G c Walks G
16 wlkcpr c Walks G 1 st c Walks G 2 nd c
17 eqid Vtx G = Vtx G
18 17 wlkpwrd 1 st c Walks G 2 nd c 2 nd c Word Vtx G
19 18 3ad2ant1 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 2 nd c Word Vtx G
20 elnnuz N N 1
21 eluzfz2 N 1 N 1 N
22 20 21 sylbi N N 1 N
23 fzelp1 N 1 N N 1 N + 1
24 22 23 syl N N 1 N + 1
25 24 3ad2ant3 G USHGraph X V N N 1 N + 1
26 25 3ad2ant3 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N N 1 N + 1
27 id 1 st c = N 1 st c = N
28 oveq1 1 st c = N 1 st c + 1 = N + 1
29 28 oveq2d 1 st c = N 1 1 st c + 1 = 1 N + 1
30 27 29 eleq12d 1 st c = N 1 st c 1 1 st c + 1 N 1 N + 1
31 30 3ad2ant2 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 1 st c 1 1 st c + 1 N 1 N + 1
32 26 31 mpbird 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 1 st c 1 1 st c + 1
33 wlklenvp1 1 st c Walks G 2 nd c 2 nd c = 1 st c + 1
34 33 oveq2d 1 st c Walks G 2 nd c 1 2 nd c = 1 1 st c + 1
35 34 eleq2d 1 st c Walks G 2 nd c 1 st c 1 2 nd c 1 st c 1 1 st c + 1
36 35 3ad2ant1 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 1 st c 1 2 nd c 1 st c 1 1 st c + 1
37 32 36 mpbird 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 1 st c 1 2 nd c
38 19 37 jca 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 2 nd c Word Vtx G 1 st c 1 2 nd c
39 38 3exp 1 st c Walks G 2 nd c 1 st c = N G USHGraph X V N 2 nd c Word Vtx G 1 st c 1 2 nd c
40 16 39 sylbi c Walks G 1 st c = N G USHGraph X V N 2 nd c Word Vtx G 1 st c 1 2 nd c
41 15 40 syl c ClWalks G 1 st c = N G USHGraph X V N 2 nd c Word Vtx G 1 st c 1 2 nd c
42 41 imp c ClWalks G 1 st c = N G USHGraph X V N 2 nd c Word Vtx G 1 st c 1 2 nd c
43 14 42 sylbi c w ClWalks G | 1 st w = N G USHGraph X V N 2 nd c Word Vtx G 1 st c 1 2 nd c
44 43 impcom G USHGraph X V N c w ClWalks G | 1 st w = N 2 nd c Word Vtx G 1 st c 1 2 nd c
45 pfxfv0 2 nd c Word Vtx G 1 st c 1 2 nd c 2 nd c prefix 1 st c 0 = 2 nd c 0
46 44 45 syl G USHGraph X V N c w ClWalks G | 1 st w = N 2 nd c prefix 1 st c 0 = 2 nd c 0
47 46 3adant3 G USHGraph X V N c w ClWalks G | 1 st w = N s = 2 nd c prefix 1 st c 2 nd c prefix 1 st c 0 = 2 nd c 0
48 11 47 eqtrd G USHGraph X V N c w ClWalks G | 1 st w = N s = 2 nd c prefix 1 st c s 0 = 2 nd c 0
49 48 eqeq1d G USHGraph X V N c w ClWalks G | 1 st w = N s = 2 nd c prefix 1 st c s 0 = X 2 nd c 0 = X
50 nfv w 2 nd c 0 = X
51 fveq2 w = c 2 nd w = 2 nd c
52 51 fveq1d w = c 2 nd w 0 = 2 nd c 0
53 52 eqeq1d w = c 2 nd w 0 = X 2 nd c 0 = X
54 50 53 sbiev c w 2 nd w 0 = X 2 nd c 0 = X
55 49 54 bitr4di G USHGraph X V N c w ClWalks G | 1 st w = N s = 2 nd c prefix 1 st c s 0 = X c w 2 nd w 0 = X
56 2 4 3 5 9 55 f1ossf1o G USHGraph X V N F : W 1-1 onto s N ClWWalksN G | s 0 = X
57 clwwlknon X ClWWalksNOn G N = s N ClWWalksN G | s 0 = X
58 f1oeq3 X ClWWalksNOn G N = s N ClWWalksN G | s 0 = X F : W 1-1 onto X ClWWalksNOn G N F : W 1-1 onto s N ClWWalksN G | s 0 = X
59 57 58 ax-mp F : W 1-1 onto X ClWWalksNOn G N F : W 1-1 onto s N ClWWalksN G | s 0 = X
60 56 59 sylibr G USHGraph X V N F : W 1-1 onto X ClWWalksNOn G N