Step |
Hyp |
Ref |
Expression |
1 |
|
numclwlk1.v |
|
2 |
|
numclwlk1.c |
|
3 |
|
numclwlk1.f |
|
4 |
|
3anass |
|
5 |
|
anidm |
|
6 |
5
|
anbi2i |
|
7 |
4 6
|
bitri |
|
8 |
7
|
rabbii |
|
9 |
8
|
fveq2i |
|
10 |
|
simpl |
|
11 |
|
simpr |
|
12 |
|
simpl |
|
13 |
1
|
clwlknon2num |
|
14 |
10 11 12 13
|
syl2an3an |
|
15 |
9 14
|
eqtrid |
|
16 |
|
rusgrusgr |
|
17 |
16
|
anim2i |
|
18 |
17
|
ancomd |
|
19 |
1
|
isfusgr |
|
20 |
18 19
|
sylibr |
|
21 |
|
ne0i |
|
22 |
21
|
adantr |
|
23 |
1
|
frusgrnn0 |
|
24 |
20 11 22 23
|
syl2an3an |
|
25 |
24
|
nn0red |
|
26 |
|
ax-1rid |
|
27 |
25 26
|
syl |
|
28 |
1
|
wlkl0 |
|
29 |
28
|
ad2antrl |
|
30 |
29
|
fveq2d |
|
31 |
|
opex |
|
32 |
|
hashsng |
|
33 |
31 32
|
ax-mp |
|
34 |
30 33
|
eqtr2di |
|
35 |
34
|
oveq2d |
|
36 |
15 27 35
|
3eqtr2d |
|
37 |
|
eqeq2 |
|
38 |
|
oveq1 |
|
39 |
|
2cn |
|
40 |
39
|
subidi |
|
41 |
38 40
|
eqtrdi |
|
42 |
41
|
fveqeq2d |
|
43 |
37 42
|
3anbi13d |
|
44 |
43
|
rabbidv |
|
45 |
2 44
|
eqtrid |
|
46 |
45
|
fveq2d |
|
47 |
41
|
eqeq2d |
|
48 |
47
|
anbi1d |
|
49 |
48
|
rabbidv |
|
50 |
3 49
|
eqtrid |
|
51 |
50
|
fveq2d |
|
52 |
51
|
oveq2d |
|
53 |
46 52
|
eqeq12d |
|
54 |
53
|
ad2antll |
|
55 |
36 54
|
mpbird |
|