| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwlk1.v |  | 
						
							| 2 |  | numclwlk1.c |  | 
						
							| 3 |  | numclwlk1.f |  | 
						
							| 4 |  | rusgrusgr |  | 
						
							| 5 |  | usgruspgr |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | ad2antlr |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 |  | uzuzle23 |  | 
						
							| 11 | 10 | ad2antll |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 2 12 | dlwwlknondlwlknonen |  | 
						
							| 14 | 7 9 11 13 | syl3anc |  | 
						
							| 15 | 4 | anim2i |  | 
						
							| 16 | 15 | ancomd |  | 
						
							| 17 | 1 | isfusgr |  | 
						
							| 18 | 16 17 | sylibr |  | 
						
							| 19 |  | eluzge3nn |  | 
						
							| 20 | 19 | nnnn0d |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | wlksnfi |  | 
						
							| 23 | 18 21 22 | syl2an |  | 
						
							| 24 |  | clwlkswks |  | 
						
							| 25 | 24 | a1i |  | 
						
							| 26 |  | simp21 |  | 
						
							| 27 | 25 26 | rabssrabd |  | 
						
							| 28 | 23 27 | ssfid |  | 
						
							| 29 | 2 28 | eqeltrid |  | 
						
							| 30 | 1 | clwwlknonfin |  | 
						
							| 31 | 30 | ad2antrr |  | 
						
							| 32 |  | ssrab2 |  | 
						
							| 33 | 32 | a1i |  | 
						
							| 34 | 31 33 | ssfid |  | 
						
							| 35 |  | hashen |  | 
						
							| 36 | 29 34 35 | syl2anc |  | 
						
							| 37 | 14 36 | mpbird |  | 
						
							| 38 |  | eqidd |  | 
						
							| 39 |  | oveq12 |  | 
						
							| 40 |  | fvoveq1 |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 |  | simpl |  | 
						
							| 43 | 41 42 | eqeq12d |  | 
						
							| 44 | 39 43 | rabeqbidv |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 |  | ovex |  | 
						
							| 47 | 46 | rabex |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 | 38 45 9 11 48 | ovmpod |  | 
						
							| 50 | 49 | fveq2d |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 | 1 51 52 | numclwwlk1 |  | 
						
							| 54 | 8 1 | eleqtrdi |  | 
						
							| 55 | 54 | adantl |  | 
						
							| 56 |  | uz3m2nn |  | 
						
							| 57 | 56 | ad2antll |  | 
						
							| 58 |  | clwwlknonclwlknonen |  | 
						
							| 59 | 7 55 57 58 | syl3anc |  | 
						
							| 60 | 3 59 | eqbrtrid |  | 
						
							| 61 |  | uznn0sub |  | 
						
							| 62 | 10 61 | syl |  | 
						
							| 63 | 62 | adantl |  | 
						
							| 64 |  | wlksnfi |  | 
						
							| 65 | 18 63 64 | syl2an |  | 
						
							| 66 |  | simp2l |  | 
						
							| 67 | 25 66 | rabssrabd |  | 
						
							| 68 | 65 67 | ssfid |  | 
						
							| 69 | 3 68 | eqeltrid |  | 
						
							| 70 | 1 | clwwlknonfin |  | 
						
							| 71 | 70 | ad2antrr |  | 
						
							| 72 |  | hashen |  | 
						
							| 73 | 69 71 72 | syl2anc |  | 
						
							| 74 | 60 73 | mpbird |  | 
						
							| 75 | 74 | eqcomd |  | 
						
							| 76 | 75 | oveq2d |  | 
						
							| 77 | 53 76 | eqtrd |  | 
						
							| 78 | 37 50 77 | 3eqtr2d |  |