| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwlk1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwlk1.c |  |-  C = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } | 
						
							| 3 |  | numclwlk1.f |  |-  F = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } | 
						
							| 4 |  | rusgrusgr |  |-  ( G RegUSGraph K -> G e. USGraph ) | 
						
							| 5 |  | usgruspgr |  |-  ( G e. USGraph -> G e. USPGraph ) | 
						
							| 6 | 4 5 | syl |  |-  ( G RegUSGraph K -> G e. USPGraph ) | 
						
							| 7 | 6 | ad2antlr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. USPGraph ) | 
						
							| 8 |  | simpl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> X e. V ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) | 
						
							| 10 |  | uzuzle23 |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 11 | 10 | ad2antll |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 12 |  | eqid |  |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } | 
						
							| 13 | 1 2 12 | dlwwlknondlwlknonen |  |-  ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 14 | 7 9 11 13 | syl3anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 15 | 4 | anim2i |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> ( V e. Fin /\ G e. USGraph ) ) | 
						
							| 16 | 15 | ancomd |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 17 | 1 | isfusgr |  |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 18 | 16 17 | sylibr |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> G e. FinUSGraph ) | 
						
							| 19 |  | eluzge3nn |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN ) | 
						
							| 20 | 19 | nnnn0d |  |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN0 ) | 
						
							| 21 | 20 | adantl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> N e. NN0 ) | 
						
							| 22 |  | wlksnfi |  |-  ( ( G e. FinUSGraph /\ N e. NN0 ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = N } e. Fin ) | 
						
							| 23 | 18 21 22 | syl2an |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = N } e. Fin ) | 
						
							| 24 |  | clwlkswks |  |-  ( ClWalks ` G ) C_ ( Walks ` G ) | 
						
							| 25 | 24 | a1i |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ClWalks ` G ) C_ ( Walks ` G ) ) | 
						
							| 26 |  | simp21 |  |-  ( ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) /\ w e. ( ClWalks ` G ) ) -> ( # ` ( 1st ` w ) ) = N ) | 
						
							| 27 | 25 26 | rabssrabd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } C_ { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = N } ) | 
						
							| 28 | 23 27 | ssfid |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } e. Fin ) | 
						
							| 29 | 2 28 | eqeltrid |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> C e. Fin ) | 
						
							| 30 | 1 | clwwlknonfin |  |-  ( V e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 32 |  | ssrab2 |  |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } C_ ( X ( ClWWalksNOn ` G ) N ) | 
						
							| 33 | 32 | a1i |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } C_ ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 34 | 31 33 | ssfid |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) | 
						
							| 35 |  | hashen |  |-  ( ( C e. Fin /\ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) -> ( ( # ` C ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) <-> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
							| 36 | 29 34 35 | syl2anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` C ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) <-> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
							| 37 | 14 36 | mpbird |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` C ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
							| 38 |  | eqidd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) ) | 
						
							| 39 |  | oveq12 |  |-  ( ( v = X /\ n = N ) -> ( v ( ClWWalksNOn ` G ) n ) = ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 40 |  | fvoveq1 |  |-  ( n = N -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( v = X /\ n = N ) -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) ) | 
						
							| 42 |  | simpl |  |-  ( ( v = X /\ n = N ) -> v = X ) | 
						
							| 43 | 41 42 | eqeq12d |  |-  ( ( v = X /\ n = N ) -> ( ( w ` ( n - 2 ) ) = v <-> ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 44 | 39 43 | rabeqbidv |  |-  ( ( v = X /\ n = N ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ ( v = X /\ n = N ) ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 46 |  | ovex |  |-  ( X ( ClWWalksNOn ` G ) N ) e. _V | 
						
							| 47 | 46 | rabex |  |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. _V ) | 
						
							| 49 | 38 45 9 11 48 | ovmpod |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
							| 51 |  | eqid |  |-  ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 52 |  | eqid |  |-  ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) | 
						
							| 53 | 1 51 52 | numclwwlk1 |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) ) = ( K x. ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) | 
						
							| 54 | 8 1 | eleqtrdi |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> X e. ( Vtx ` G ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. ( Vtx ` G ) ) | 
						
							| 56 |  | uz3m2nn |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) | 
						
							| 57 | 56 | ad2antll |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. NN ) | 
						
							| 58 |  | clwwlknonclwlknonen |  |-  ( ( G e. USPGraph /\ X e. ( Vtx ` G ) /\ ( N - 2 ) e. NN ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 59 | 7 55 57 58 | syl3anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 60 | 3 59 | eqbrtrid |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> F ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) | 
						
							| 61 |  | uznn0sub |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) | 
						
							| 62 | 10 61 | syl |  |-  ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN0 ) | 
						
							| 63 | 62 | adantl |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. NN0 ) | 
						
							| 64 |  | wlksnfi |  |-  ( ( G e. FinUSGraph /\ ( N - 2 ) e. NN0 ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = ( N - 2 ) } e. Fin ) | 
						
							| 65 | 18 63 64 | syl2an |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = ( N - 2 ) } e. Fin ) | 
						
							| 66 |  | simp2l |  |-  ( ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) /\ w e. ( ClWalks ` G ) ) -> ( # ` ( 1st ` w ) ) = ( N - 2 ) ) | 
						
							| 67 | 25 66 | rabssrabd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } C_ { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = ( N - 2 ) } ) | 
						
							| 68 | 65 67 | ssfid |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. Fin ) | 
						
							| 69 | 3 68 | eqeltrid |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> F e. Fin ) | 
						
							| 70 | 1 | clwwlknonfin |  |-  ( V e. Fin -> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) | 
						
							| 71 | 70 | ad2antrr |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) | 
						
							| 72 |  | hashen |  |-  ( ( F e. Fin /\ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) -> ( ( # ` F ) = ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) <-> F ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) | 
						
							| 73 | 69 71 72 | syl2anc |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) = ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) <-> F ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) | 
						
							| 74 | 60 73 | mpbird |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` F ) = ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) | 
						
							| 75 | 74 | eqcomd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) = ( # ` F ) ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( K x. ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) = ( K x. ( # ` F ) ) ) | 
						
							| 77 | 53 76 | eqtrd |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) ) = ( K x. ( # ` F ) ) ) | 
						
							| 78 | 37 50 77 | 3eqtr2d |  |-  ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) |