| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwlk1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
numclwlk1.c |
|- C = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } |
| 3 |
|
numclwlk1.f |
|- F = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } |
| 4 |
|
rusgrusgr |
|- ( G RegUSGraph K -> G e. USGraph ) |
| 5 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
| 6 |
4 5
|
syl |
|- ( G RegUSGraph K -> G e. USPGraph ) |
| 7 |
6
|
ad2antlr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. USPGraph ) |
| 8 |
|
simpl |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> X e. V ) |
| 9 |
8
|
adantl |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) |
| 10 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
| 11 |
10
|
ad2antll |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 12 |
|
eqid |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } |
| 13 |
1 2 12
|
dlwwlknondlwlknonen |
|- ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
| 14 |
7 9 11 13
|
syl3anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
| 15 |
4
|
anim2i |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> ( V e. Fin /\ G e. USGraph ) ) |
| 16 |
15
|
ancomd |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> ( G e. USGraph /\ V e. Fin ) ) |
| 17 |
1
|
isfusgr |
|- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
| 18 |
16 17
|
sylibr |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> G e. FinUSGraph ) |
| 19 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 20 |
19
|
nnnn0d |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN0 ) |
| 21 |
20
|
adantl |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> N e. NN0 ) |
| 22 |
|
wlksnfi |
|- ( ( G e. FinUSGraph /\ N e. NN0 ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = N } e. Fin ) |
| 23 |
18 21 22
|
syl2an |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = N } e. Fin ) |
| 24 |
|
clwlkswks |
|- ( ClWalks ` G ) C_ ( Walks ` G ) |
| 25 |
24
|
a1i |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ClWalks ` G ) C_ ( Walks ` G ) ) |
| 26 |
|
simp21 |
|- ( ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) /\ w e. ( ClWalks ` G ) ) -> ( # ` ( 1st ` w ) ) = N ) |
| 27 |
25 26
|
rabssrabd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } C_ { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = N } ) |
| 28 |
23 27
|
ssfid |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } e. Fin ) |
| 29 |
2 28
|
eqeltrid |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> C e. Fin ) |
| 30 |
1
|
clwwlknonfin |
|- ( V e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) |
| 32 |
|
ssrab2 |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } C_ ( X ( ClWWalksNOn ` G ) N ) |
| 33 |
32
|
a1i |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } C_ ( X ( ClWWalksNOn ` G ) N ) ) |
| 34 |
31 33
|
ssfid |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) |
| 35 |
|
hashen |
|- ( ( C e. Fin /\ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) -> ( ( # ` C ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) <-> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
| 36 |
29 34 35
|
syl2anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` C ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) <-> C ~~ { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
| 37 |
14 36
|
mpbird |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` C ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
| 38 |
|
eqidd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) ) |
| 39 |
|
oveq12 |
|- ( ( v = X /\ n = N ) -> ( v ( ClWWalksNOn ` G ) n ) = ( X ( ClWWalksNOn ` G ) N ) ) |
| 40 |
|
fvoveq1 |
|- ( n = N -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) ) |
| 41 |
40
|
adantl |
|- ( ( v = X /\ n = N ) -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) ) |
| 42 |
|
simpl |
|- ( ( v = X /\ n = N ) -> v = X ) |
| 43 |
41 42
|
eqeq12d |
|- ( ( v = X /\ n = N ) -> ( ( w ` ( n - 2 ) ) = v <-> ( w ` ( N - 2 ) ) = X ) ) |
| 44 |
39 43
|
rabeqbidv |
|- ( ( v = X /\ n = N ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
| 45 |
44
|
adantl |
|- ( ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ ( v = X /\ n = N ) ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
| 46 |
|
ovex |
|- ( X ( ClWWalksNOn ` G ) N ) e. _V |
| 47 |
46
|
rabex |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. _V |
| 48 |
47
|
a1i |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. _V ) |
| 49 |
38 45 9 11 48
|
ovmpod |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
| 50 |
49
|
fveq2d |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) ) = ( # ` { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
| 51 |
|
eqid |
|- ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
| 52 |
|
eqid |
|- ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
| 53 |
1 51 52
|
numclwwlk1 |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) ) = ( K x. ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) |
| 54 |
8 1
|
eleqtrdi |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> X e. ( Vtx ` G ) ) |
| 55 |
54
|
adantl |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. ( Vtx ` G ) ) |
| 56 |
|
uz3m2nn |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |
| 57 |
56
|
ad2antll |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. NN ) |
| 58 |
|
clwwlknonclwlknonen |
|- ( ( G e. USPGraph /\ X e. ( Vtx ` G ) /\ ( N - 2 ) e. NN ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |
| 59 |
7 55 57 58
|
syl3anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |
| 60 |
3 59
|
eqbrtrid |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> F ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |
| 61 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
| 62 |
10 61
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN0 ) |
| 63 |
62
|
adantl |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. NN0 ) |
| 64 |
|
wlksnfi |
|- ( ( G e. FinUSGraph /\ ( N - 2 ) e. NN0 ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = ( N - 2 ) } e. Fin ) |
| 65 |
18 63 64
|
syl2an |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = ( N - 2 ) } e. Fin ) |
| 66 |
|
simp2l |
|- ( ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) /\ w e. ( ClWalks ` G ) ) -> ( # ` ( 1st ` w ) ) = ( N - 2 ) ) |
| 67 |
25 66
|
rabssrabd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } C_ { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = ( N - 2 ) } ) |
| 68 |
65 67
|
ssfid |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. Fin ) |
| 69 |
3 68
|
eqeltrid |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> F e. Fin ) |
| 70 |
1
|
clwwlknonfin |
|- ( V e. Fin -> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) |
| 71 |
70
|
ad2antrr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) |
| 72 |
|
hashen |
|- ( ( F e. Fin /\ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) -> ( ( # ` F ) = ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) <-> F ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) |
| 73 |
69 71 72
|
syl2anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) = ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) <-> F ~~ ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) |
| 74 |
60 73
|
mpbird |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` F ) = ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) |
| 75 |
74
|
eqcomd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) = ( # ` F ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( K x. ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) = ( K x. ( # ` F ) ) ) |
| 77 |
53 76
|
eqtrd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) N ) ) = ( K x. ( # ` F ) ) ) |
| 78 |
37 50 77
|
3eqtr2d |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) |