| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex |  |-  ( ClWalks ` G ) e. _V | 
						
							| 2 | 1 | rabex |  |-  { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. _V | 
						
							| 3 |  | ovex |  |-  ( X ( ClWWalksNOn ` G ) N ) e. _V | 
						
							| 4 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 5 |  | eqid |  |-  { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } | 
						
							| 6 |  | eqid |  |-  ( c e. { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) = ( c e. { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) | 
						
							| 7 | 4 5 6 | clwwlknonclwlknonf1o |  |-  ( ( G e. USPGraph /\ X e. ( Vtx ` G ) /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 8 |  | f1oen2g |  |-  ( ( { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. _V /\ ( X ( ClWWalksNOn ` G ) N ) e. _V /\ ( c e. { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 9 | 2 3 7 8 | mp3an12i |  |-  ( ( G e. USPGraph /\ X e. ( Vtx ` G ) /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) N ) ) |