| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dlwwlknondlwlknonbij.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | dlwwlknondlwlknonbij.w |  |-  W = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } | 
						
							| 3 |  | dlwwlknondlwlknonbij.d |  |-  D = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } | 
						
							| 4 |  | fvex |  |-  ( ClWalks ` G ) e. _V | 
						
							| 5 | 2 4 | rabex2 |  |-  W e. _V | 
						
							| 6 |  | ovex |  |-  ( X ( ClWWalksNOn ` G ) N ) e. _V | 
						
							| 7 | 3 6 | rabex2 |  |-  D e. _V | 
						
							| 8 |  | eqid |  |-  ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) = ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) | 
						
							| 9 | 1 2 3 8 | dlwwlknondlwlknonf1o |  |-  ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : W -1-1-onto-> D ) | 
						
							| 10 |  | f1oen2g |  |-  ( ( W e. _V /\ D e. _V /\ ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : W -1-1-onto-> D ) -> W ~~ D ) | 
						
							| 11 | 5 7 9 10 | mp3an12i |  |-  ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> W ~~ D ) |