Metamath Proof Explorer


Theorem dlwwlknondlwlknonen

Description: The sets of the two representations of double loops of a fixed length on a fixed vertex are equinumerous. (Contributed by AV, 30-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses dlwwlknondlwlknonbij.v
|- V = ( Vtx ` G )
dlwwlknondlwlknonbij.w
|- W = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) }
dlwwlknondlwlknonbij.d
|- D = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X }
Assertion dlwwlknondlwlknonen
|- ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> W ~~ D )

Proof

Step Hyp Ref Expression
1 dlwwlknondlwlknonbij.v
 |-  V = ( Vtx ` G )
2 dlwwlknondlwlknonbij.w
 |-  W = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) }
3 dlwwlknondlwlknonbij.d
 |-  D = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X }
4 fvex
 |-  ( ClWalks ` G ) e. _V
5 2 4 rabex2
 |-  W e. _V
6 ovex
 |-  ( X ( ClWWalksNOn ` G ) N ) e. _V
7 3 6 rabex2
 |-  D e. _V
8 eqid
 |-  ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) = ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) )
9 1 2 3 8 dlwwlknondlwlknonf1o
 |-  ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : W -1-1-onto-> D )
10 f1oen2g
 |-  ( ( W e. _V /\ D e. _V /\ ( c e. W |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : W -1-1-onto-> D ) -> W ~~ D )
11 5 7 9 10 mp3an12i
 |-  ( ( G e. USPGraph /\ X e. V /\ N e. ( ZZ>= ` 2 ) ) -> W ~~ D )