| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dlwwlknondlwlknonbij.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | dlwwlknondlwlknonbij.w | ⊢ 𝑊  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ ( 𝑁  −  2 ) )  =  𝑋 ) } | 
						
							| 3 |  | dlwwlknondlwlknonbij.d | ⊢ 𝐷  =  { 𝑤  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∣  ( 𝑤 ‘ ( 𝑁  −  2 ) )  =  𝑋 } | 
						
							| 4 |  | fvex | ⊢ ( ClWalks ‘ 𝐺 )  ∈  V | 
						
							| 5 | 2 4 | rabex2 | ⊢ 𝑊  ∈  V | 
						
							| 6 |  | ovex | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  V | 
						
							| 7 | 3 6 | rabex2 | ⊢ 𝐷  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( 𝑐  ∈  𝑊  ↦  ( ( 2nd  ‘ 𝑐 )  prefix  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) ) )  =  ( 𝑐  ∈  𝑊  ↦  ( ( 2nd  ‘ 𝑐 )  prefix  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) ) ) | 
						
							| 9 | 1 2 3 8 | dlwwlknondlwlknonf1o | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑐  ∈  𝑊  ↦  ( ( 2nd  ‘ 𝑐 )  prefix  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) ) ) : 𝑊 –1-1-onto→ 𝐷 ) | 
						
							| 10 |  | f1oen2g | ⊢ ( ( 𝑊  ∈  V  ∧  𝐷  ∈  V  ∧  ( 𝑐  ∈  𝑊  ↦  ( ( 2nd  ‘ 𝑐 )  prefix  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) ) ) : 𝑊 –1-1-onto→ 𝐷 )  →  𝑊  ≈  𝐷 ) | 
						
							| 11 | 5 7 9 10 | mp3an12i | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑊  ≈  𝐷 ) |