| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlknon2num.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
clwlkwlk |
⊢ ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 ∈ ( Walks ‘ 𝐺 ) ) |
| 3 |
|
wlkop |
⊢ ( 𝑤 ∈ ( Walks ‘ 𝐺 ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 5 |
|
fvex |
⊢ ( 1st ‘ 𝑤 ) ∈ V |
| 6 |
|
hasheq0 |
⊢ ( ( 1st ‘ 𝑤 ) ∈ V → ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ↔ ( 1st ‘ 𝑤 ) = ∅ ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ↔ ( 1st ‘ 𝑤 ) = ∅ ) |
| 8 |
7
|
biimpi |
⊢ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 → ( 1st ‘ 𝑤 ) = ∅ ) |
| 9 |
8
|
adantr |
⊢ ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → ( 1st ‘ 𝑤 ) = ∅ ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( 1st ‘ 𝑤 ) = ∅ ) |
| 11 |
9
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( 1st ‘ 𝑤 ) = ∅ ) |
| 12 |
11
|
breq1d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ↔ ∅ ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ) ) |
| 13 |
1
|
1vgrex |
⊢ ( 𝑋 ∈ 𝑉 → 𝐺 ∈ V ) |
| 14 |
1
|
0clwlk |
⊢ ( 𝐺 ∈ V → ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 17 |
12 16
|
bitrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ↔ ( 2nd ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 18 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
| 19 |
18
|
feq2i |
⊢ ( ( 2nd ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( 2nd ‘ 𝑤 ) : { 0 } ⟶ 𝑉 ) |
| 20 |
|
c0ex |
⊢ 0 ∈ V |
| 21 |
20
|
fsn2 |
⊢ ( ( 2nd ‘ 𝑤 ) : { 0 } ⟶ 𝑉 ↔ ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) |
| 22 |
|
simprr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) |
| 23 |
|
simprr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) → ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) |
| 25 |
24
|
opeq2d |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) → 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 = 〈 0 , 𝑋 〉 ) |
| 26 |
25
|
sneqd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) → { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } = { 〈 0 , 𝑋 〉 } ) |
| 27 |
22 26
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ∧ ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) |
| 28 |
27
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) ∈ 𝑉 ∧ ( 2nd ‘ 𝑤 ) = { 〈 0 , ( ( 2nd ‘ 𝑤 ) ‘ 0 ) 〉 } ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) ) |
| 29 |
21 28
|
biimtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 2nd ‘ 𝑤 ) : { 0 } ⟶ 𝑉 → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) ) |
| 30 |
19 29
|
biimtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 2nd ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) ) |
| 31 |
17 30
|
sylbid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) ) |
| 32 |
31
|
ex |
⊢ ( 𝑋 ∈ 𝑉 → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) ) ) |
| 33 |
32
|
com23 |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) ) ) |
| 34 |
33
|
3imp |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) |
| 35 |
10 34
|
opeq12d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) |
| 36 |
35
|
3exp |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) |
| 37 |
|
eleq1 |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) ) |
| 38 |
|
df-br |
⊢ ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
| 39 |
37 38
|
bitr4di |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) ) ) |
| 40 |
|
eqeq1 |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ↔ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ↔ ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) |
| 42 |
39 41
|
imbi12d |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ↔ ( ( 1st ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd ‘ 𝑤 ) → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) ) |
| 43 |
36 42
|
imbitrrid |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( 𝑋 ∈ 𝑉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) ) |
| 44 |
43
|
com23 |
⊢ ( 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝑋 ∈ 𝑉 → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) ) |
| 45 |
4 44
|
mpcom |
⊢ ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝑋 ∈ 𝑉 → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) |
| 46 |
45
|
com12 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) ) |
| 47 |
46
|
impd |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) → 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) |
| 48 |
|
eqidd |
⊢ ( 𝑋 ∈ 𝑉 → ∅ = ∅ ) |
| 49 |
20
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 0 ∈ V ) |
| 50 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) |
| 51 |
49 50
|
fsnd |
⊢ ( 𝑋 ∈ 𝑉 → { 〈 0 , 𝑋 〉 } : { 0 } ⟶ { 𝑋 } ) |
| 52 |
1
|
0clwlkv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∅ = ∅ ∧ { 〈 0 , 𝑋 〉 } : { 0 } ⟶ { 𝑋 } ) → ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 , 𝑋 〉 } ) |
| 53 |
48 51 52
|
mpd3an23 |
⊢ ( 𝑋 ∈ 𝑉 → ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 , 𝑋 〉 } ) |
| 54 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 55 |
54
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( ♯ ‘ ∅ ) = 0 ) |
| 56 |
|
fvsng |
⊢ ( ( 0 ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( { 〈 0 , 𝑋 〉 } ‘ 0 ) = 𝑋 ) |
| 57 |
20 56
|
mpan |
⊢ ( 𝑋 ∈ 𝑉 → ( { 〈 0 , 𝑋 〉 } ‘ 0 ) = 𝑋 ) |
| 58 |
53 55 57
|
jca32 |
⊢ ( 𝑋 ∈ 𝑉 → ( ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 , 𝑋 〉 } ∧ ( ( ♯ ‘ ∅ ) = 0 ∧ ( { 〈 0 , 𝑋 〉 } ‘ 0 ) = 𝑋 ) ) ) |
| 59 |
|
eleq1 |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ∈ ( ClWalks ‘ 𝐺 ) ) ) |
| 60 |
|
df-br |
⊢ ( ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 , 𝑋 〉 } ↔ 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
| 61 |
59 60
|
bitr4di |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ↔ ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 , 𝑋 〉 } ) ) |
| 62 |
|
0ex |
⊢ ∅ ∈ V |
| 63 |
|
snex |
⊢ { 〈 0 , 𝑋 〉 } ∈ V |
| 64 |
62 63
|
op1std |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( 1st ‘ 𝑤 ) = ∅ ) |
| 65 |
64
|
fveqeq2d |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ↔ ( ♯ ‘ ∅ ) = 0 ) ) |
| 66 |
62 63
|
op2ndd |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( 2nd ‘ 𝑤 ) = { 〈 0 , 𝑋 〉 } ) |
| 67 |
66
|
fveq1d |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = ( { 〈 0 , 𝑋 〉 } ‘ 0 ) ) |
| 68 |
67
|
eqeq1d |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ↔ ( { 〈 0 , 𝑋 〉 } ‘ 0 ) = 𝑋 ) ) |
| 69 |
65 68
|
anbi12d |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ↔ ( ( ♯ ‘ ∅ ) = 0 ∧ ( { 〈 0 , 𝑋 〉 } ‘ 0 ) = 𝑋 ) ) ) |
| 70 |
61 69
|
anbi12d |
⊢ ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ ( ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 , 𝑋 〉 } ∧ ( ( ♯ ‘ ∅ ) = 0 ∧ ( { 〈 0 , 𝑋 〉 } ‘ 0 ) = 𝑋 ) ) ) ) |
| 71 |
58 70
|
syl5ibrcom |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 → ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ) ) |
| 72 |
47 71
|
impbid |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) |
| 73 |
72
|
alrimiv |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑤 ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) |
| 74 |
|
rabeqsn |
⊢ ( { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } = { 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 } ↔ ∀ 𝑤 ( ( 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ) ↔ 𝑤 = 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 ) ) |
| 75 |
73 74
|
sylibr |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 0 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } = { 〈 ∅ , { 〈 0 , 𝑋 〉 } 〉 } ) |