| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlknon2num.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwlkwlk | ⊢ ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  𝑤  ∈  ( Walks ‘ 𝐺 ) ) | 
						
							| 3 |  | wlkop | ⊢ ( 𝑤  ∈  ( Walks ‘ 𝐺 )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 5 |  | fvex | ⊢ ( 1st  ‘ 𝑤 )  ∈  V | 
						
							| 6 |  | hasheq0 | ⊢ ( ( 1st  ‘ 𝑤 )  ∈  V  →  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ↔  ( 1st  ‘ 𝑤 )  =  ∅ ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ↔  ( 1st  ‘ 𝑤 )  =  ∅ ) | 
						
							| 8 | 7 | biimpi | ⊢ ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  →  ( 1st  ‘ 𝑤 )  =  ∅ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  ( 1st  ‘ 𝑤 )  =  ∅ ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( 1st  ‘ 𝑤 )  =  ∅ ) | 
						
							| 11 | 9 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( 1st  ‘ 𝑤 )  =  ∅ ) | 
						
							| 12 | 11 | breq1d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ↔  ∅ ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 13 | 1 | 1vgrex | ⊢ ( 𝑋  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 14 | 1 | 0clwlk | ⊢ ( 𝐺  ∈  V  →  ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑋  ∈  𝑉  →  ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ∅ ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 17 | 12 16 | bitrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ↔  ( 2nd  ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉 ) ) | 
						
							| 18 |  | fz0sn | ⊢ ( 0 ... 0 )  =  { 0 } | 
						
							| 19 | 18 | feq2i | ⊢ ( ( 2nd  ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉  ↔  ( 2nd  ‘ 𝑤 ) : { 0 } ⟶ 𝑉 ) | 
						
							| 20 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 21 | 20 | fsn2 | ⊢ ( ( 2nd  ‘ 𝑤 ) : { 0 } ⟶ 𝑉  ↔  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ∧  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) | 
						
							| 23 |  | simprr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ∧  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) )  →  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) | 
						
							| 25 | 24 | opeq2d | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ∧  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) )  →  〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉  =  〈 0 ,  𝑋 〉 ) | 
						
							| 26 | 25 | sneqd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ∧  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) )  →  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 }  =  { 〈 0 ,  𝑋 〉 } ) | 
						
							| 27 | 22 26 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ∧  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } ) )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) | 
						
							| 28 | 27 | ex | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  ∈  𝑉  ∧  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  ( ( 2nd  ‘ 𝑤 ) ‘ 0 ) 〉 } )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) ) | 
						
							| 29 | 21 28 | biimtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( 2nd  ‘ 𝑤 ) : { 0 } ⟶ 𝑉  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) ) | 
						
							| 30 | 19 29 | biimtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( 2nd  ‘ 𝑤 ) : ( 0 ... 0 ) ⟶ 𝑉  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) ) | 
						
							| 31 | 17 30 | sylbid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑋  ∈  𝑉  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) ) ) | 
						
							| 33 | 32 | com23 | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) ) ) | 
						
							| 34 | 33 | 3imp | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) | 
						
							| 35 | 10 34 | opeq12d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) | 
						
							| 36 | 35 | 3exp | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) | 
						
							| 37 |  | eleq1 | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) ) ) | 
						
							| 38 |  | df-br | ⊢ ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) ) | 
						
							| 39 | 37 38 | bitr4di | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ↔  ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 40 |  | eqeq1 | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  ↔  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 )  ↔  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) | 
						
							| 42 | 39 41 | imbi12d | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) )  ↔  ( ( 1st  ‘ 𝑤 ) ( ClWalks ‘ 𝐺 ) ( 2nd  ‘ 𝑤 )  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) ) | 
						
							| 43 | 36 42 | imbitrrid | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 𝑋  ∈  𝑉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) ) | 
						
							| 44 | 43 | com23 | ⊢ ( 𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  ( 𝑋  ∈  𝑉  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) ) | 
						
							| 45 | 4 44 | mpcom | ⊢ ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  ( 𝑋  ∈  𝑉  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) | 
						
							| 46 | 45 | com12 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) ) | 
						
							| 47 | 46 | impd | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  →  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) | 
						
							| 48 |  | eqidd | ⊢ ( 𝑋  ∈  𝑉  →  ∅  =  ∅ ) | 
						
							| 49 | 20 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  0  ∈  V ) | 
						
							| 50 |  | snidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 51 | 49 50 | fsnd | ⊢ ( 𝑋  ∈  𝑉  →  { 〈 0 ,  𝑋 〉 } : { 0 } ⟶ { 𝑋 } ) | 
						
							| 52 | 1 | 0clwlkv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∅  =  ∅  ∧  { 〈 0 ,  𝑋 〉 } : { 0 } ⟶ { 𝑋 } )  →  ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 ,  𝑋 〉 } ) | 
						
							| 53 | 48 51 52 | mpd3an23 | ⊢ ( 𝑋  ∈  𝑉  →  ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 ,  𝑋 〉 } ) | 
						
							| 54 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 55 | 54 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ( ♯ ‘ ∅ )  =  0 ) | 
						
							| 56 |  | fvsng | ⊢ ( ( 0  ∈  V  ∧  𝑋  ∈  𝑉 )  →  ( { 〈 0 ,  𝑋 〉 } ‘ 0 )  =  𝑋 ) | 
						
							| 57 | 20 56 | mpan | ⊢ ( 𝑋  ∈  𝑉  →  ( { 〈 0 ,  𝑋 〉 } ‘ 0 )  =  𝑋 ) | 
						
							| 58 | 53 55 57 | jca32 | ⊢ ( 𝑋  ∈  𝑉  →  ( ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 ,  𝑋 〉 }  ∧  ( ( ♯ ‘ ∅ )  =  0  ∧  ( { 〈 0 ,  𝑋 〉 } ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 59 |  | eleq1 | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ↔  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  ∈  ( ClWalks ‘ 𝐺 ) ) ) | 
						
							| 60 |  | df-br | ⊢ ( ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 ,  𝑋 〉 }  ↔  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  ∈  ( ClWalks ‘ 𝐺 ) ) | 
						
							| 61 | 59 60 | bitr4di | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ↔  ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 ,  𝑋 〉 } ) ) | 
						
							| 62 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 63 |  | snex | ⊢ { 〈 0 ,  𝑋 〉 }  ∈  V | 
						
							| 64 | 62 63 | op1std | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( 1st  ‘ 𝑤 )  =  ∅ ) | 
						
							| 65 | 64 | fveqeq2d | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ↔  ( ♯ ‘ ∅ )  =  0 ) ) | 
						
							| 66 | 62 63 | op2ndd | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( 2nd  ‘ 𝑤 )  =  { 〈 0 ,  𝑋 〉 } ) | 
						
							| 67 | 66 | fveq1d | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  ( { 〈 0 ,  𝑋 〉 } ‘ 0 ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋  ↔  ( { 〈 0 ,  𝑋 〉 } ‘ 0 )  =  𝑋 ) ) | 
						
							| 69 | 65 68 | anbi12d | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  ↔  ( ( ♯ ‘ ∅ )  =  0  ∧  ( { 〈 0 ,  𝑋 〉 } ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 70 | 61 69 | anbi12d | ⊢ ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ↔  ( ∅ ( ClWalks ‘ 𝐺 ) { 〈 0 ,  𝑋 〉 }  ∧  ( ( ♯ ‘ ∅ )  =  0  ∧  ( { 〈 0 ,  𝑋 〉 } ‘ 0 )  =  𝑋 ) ) ) ) | 
						
							| 71 | 58 70 | syl5ibrcom | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉  →  ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) ) ) ) | 
						
							| 72 | 47 71 | impbid | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ↔  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) | 
						
							| 73 | 72 | alrimiv | ⊢ ( 𝑋  ∈  𝑉  →  ∀ 𝑤 ( ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ↔  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) | 
						
							| 74 |  | rabeqsn | ⊢ ( { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  =  { 〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 }  ↔  ∀ 𝑤 ( ( 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) )  ↔  𝑤  =  〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 ) ) | 
						
							| 75 | 73 74 | sylibr | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  0  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  =  { 〈 ∅ ,  { 〈 0 ,  𝑋 〉 } 〉 } ) |