| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlknon2num.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrusgr | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USGraph ) | 
						
							| 3 |  | usgruspgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  USPGraph ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USPGraph ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝐺  ∈  USPGraph ) | 
						
							| 6 | 1 | eleq2i | ⊢ ( 𝑋  ∈  𝑉  ↔  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 | 6 | biimpi | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 9 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  2  ∈  ℕ ) | 
						
							| 11 |  | clwwlknonclwlknonen | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  2  ∈  ℕ )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) | 
						
							| 12 | 5 8 10 11 | syl3anc | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) | 
						
							| 13 | 2 | anim2i | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝑉  ∈  Fin  ∧  𝐺  ∈  USGraph ) ) | 
						
							| 14 | 13 | ancomd | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 15 | 1 | isfusgr | ⊢ ( 𝐺  ∈  FinUSGraph  ↔  ( 𝐺  ∈  USGraph  ∧  𝑉  ∈  Fin ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 18 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  2  ∈  ℕ0 ) | 
						
							| 20 |  | wlksnfi | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  2  ∈  ℕ0 )  →  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2 }  ∈  Fin ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2 }  ∈  Fin ) | 
						
							| 22 |  | clwlkswks | ⊢ ( ClWalks ‘ 𝐺 )  ⊆  ( Walks ‘ 𝐺 ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ClWalks ‘ 𝐺 )  ⊆  ( Walks ‘ 𝐺 ) ) | 
						
							| 24 |  | simp2l | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 )  ∧  𝑤  ∈  ( ClWalks ‘ 𝐺 ) )  →  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2 ) | 
						
							| 25 | 23 24 | rabssrabd | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ⊆  { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2 } ) | 
						
							| 26 | 21 25 | ssfid | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ∈  Fin ) | 
						
							| 27 | 1 | clwwlknonfin | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ∈  Fin ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ∈  Fin ) | 
						
							| 29 |  | hashen | ⊢ ( ( { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ∈  Fin  ∧  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  ∈  Fin )  →  ( ( ♯ ‘ { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  ↔  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ) | 
						
							| 30 | 26 28 29 | syl2anc | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ( ♯ ‘ { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  ↔  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) }  ≈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ) | 
						
							| 31 | 12 30 | mpbird | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) } )  =  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ) | 
						
							| 32 | 7 | anim2i | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 33 | 32 | 3adant1 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 34 |  | clwwlknon2num | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾 ) | 
						
							| 36 | 31 35 | eqtrd | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  2  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑋 ) } )  =  𝐾 ) |