Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ClWWalksNOn ‘ 𝐺 ) = ( ClWWalksNOn ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
4 |
1 2 3
|
clwwlknon2x |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) = { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } |
5 |
4
|
a1i |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) = { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) = ( ♯ ‘ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ) ) |
7 |
|
3ancomb |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
8 |
7
|
rabbii |
⊢ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } = { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } |
9 |
8
|
fveq2i |
⊢ ( ♯ ‘ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ) |
10 |
2
|
rusgrnumwrdl2 |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = 𝐾 ) |
11 |
9 10
|
eqtr3id |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ) = 𝐾 ) |
12 |
6 11
|
eqtrd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) = 𝐾 ) |