| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ClWWalksNOn ‘ 𝐺 )  =  ( ClWWalksNOn ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | clwwlknon2x | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 )  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  ( ♯ ‘ { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) ) | 
						
							| 7 |  | 3ancomb | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑋  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 8 | 7 | rabbii | ⊢ { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑋  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } | 
						
							| 9 | 8 | fveq2i | ⊢ ( ♯ ‘ { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑋  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } ) | 
						
							| 10 | 2 | rusgrnumwrdl2 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑋  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  𝐾 ) | 
						
							| 11 | 9 10 | eqtr3id | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  =  𝐾 ) | 
						
							| 12 | 6 11 | eqtrd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾 ) |