| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlknon2num.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | rusgrusgr |  |-  ( G RegUSGraph K -> G e. USGraph ) | 
						
							| 3 |  | usgruspgr |  |-  ( G e. USGraph -> G e. USPGraph ) | 
						
							| 4 | 2 3 | syl |  |-  ( G RegUSGraph K -> G e. USPGraph ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> G e. USPGraph ) | 
						
							| 6 | 1 | eleq2i |  |-  ( X e. V <-> X e. ( Vtx ` G ) ) | 
						
							| 7 | 6 | biimpi |  |-  ( X e. V -> X e. ( Vtx ` G ) ) | 
						
							| 8 | 7 | 3ad2ant3 |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> X e. ( Vtx ` G ) ) | 
						
							| 9 |  | 2nn |  |-  2 e. NN | 
						
							| 10 | 9 | a1i |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> 2 e. NN ) | 
						
							| 11 |  | clwwlknonclwlknonen |  |-  ( ( G e. USPGraph /\ X e. ( Vtx ` G ) /\ 2 e. NN ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 12 | 5 8 10 11 | syl3anc |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 13 | 2 | anim2i |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> ( V e. Fin /\ G e. USGraph ) ) | 
						
							| 14 | 13 | ancomd |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 15 | 1 | isfusgr |  |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) | 
						
							| 16 | 14 15 | sylibr |  |-  ( ( V e. Fin /\ G RegUSGraph K ) -> G e. FinUSGraph ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> G e. FinUSGraph ) | 
						
							| 18 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 19 | 18 | a1i |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> 2 e. NN0 ) | 
						
							| 20 |  | wlksnfi |  |-  ( ( G e. FinUSGraph /\ 2 e. NN0 ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = 2 } e. Fin ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = 2 } e. Fin ) | 
						
							| 22 |  | clwlkswks |  |-  ( ClWalks ` G ) C_ ( Walks ` G ) | 
						
							| 23 | 22 | a1i |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( ClWalks ` G ) C_ ( Walks ` G ) ) | 
						
							| 24 |  | simp2l |  |-  ( ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) /\ ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) /\ w e. ( ClWalks ` G ) ) -> ( # ` ( 1st ` w ) ) = 2 ) | 
						
							| 25 | 23 24 | rabssrabd |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } C_ { w e. ( Walks ` G ) | ( # ` ( 1st ` w ) ) = 2 } ) | 
						
							| 26 | 21 25 | ssfid |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. Fin ) | 
						
							| 27 | 1 | clwwlknonfin |  |-  ( V e. Fin -> ( X ( ClWWalksNOn ` G ) 2 ) e. Fin ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( X ( ClWWalksNOn ` G ) 2 ) e. Fin ) | 
						
							| 29 |  | hashen |  |-  ( ( { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } e. Fin /\ ( X ( ClWWalksNOn ` G ) 2 ) e. Fin ) -> ( ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) <-> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) ) | 
						
							| 30 | 26 28 29 | syl2anc |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) <-> { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ~~ ( X ( ClWWalksNOn ` G ) 2 ) ) ) | 
						
							| 31 | 12 30 | mpbird |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) ) | 
						
							| 32 | 7 | anim2i |  |-  ( ( G RegUSGraph K /\ X e. V ) -> ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) ) | 
						
							| 33 | 32 | 3adant1 |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) ) | 
						
							| 34 |  | clwwlknon2num |  |-  ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) | 
						
							| 36 | 31 35 | eqtrd |  |-  ( ( V e. Fin /\ G RegUSGraph K /\ X e. V ) -> ( # ` { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = 2 /\ ( ( 2nd ` w ) ` 0 ) = X ) } ) = K ) |