| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) ) |
| 2 |
|
2lt3 |
⊢ 2 < 3 |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
|
3re |
⊢ 3 ∈ ℝ |
| 5 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 6 |
|
ltletr |
⊢ ( ( 2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 2 < 3 ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) ) |
| 7 |
3 4 5 6
|
mp3an12i |
⊢ ( 𝑁 ∈ ℤ → ( ( 2 < 3 ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) ) |
| 8 |
2 7
|
mpani |
⊢ ( 𝑁 ∈ ℤ → ( 3 ≤ 𝑁 → 2 < 𝑁 ) ) |
| 9 |
8
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
| 10 |
9
|
3adant1 |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 2 < 𝑁 ) |
| 11 |
1 10
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑁 ) |
| 12 |
|
2nn |
⊢ 2 ∈ ℕ |
| 13 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 14 |
|
nnsub |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 < 𝑁 ↔ ( 𝑁 − 2 ) ∈ ℕ ) ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 2 < 𝑁 ↔ ( 𝑁 − 2 ) ∈ ℕ ) ) |
| 16 |
11 15
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 − 2 ) ∈ ℕ ) |