Metamath Proof Explorer


Theorem numinfctb

Description: A numerable infinite set contains a countable subset.MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion numinfctb ( ( 𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin ) → ω ≼ 𝑆 )

Proof

Step Hyp Ref Expression
1 omelon ω ∈ On
2 onenon ( ω ∈ On → ω ∈ dom card )
3 1 2 ax-mp ω ∈ dom card
4 domtri2 ( ( ω ∈ dom card ∧ 𝑆 ∈ dom card ) → ( ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω ) )
5 3 4 mpan ( 𝑆 ∈ dom card → ( ω ≼ 𝑆 ↔ ¬ 𝑆 ≺ ω ) )
6 isfinite ( 𝑆 ∈ Fin ↔ 𝑆 ≺ ω )
7 6 notbii ( ¬ 𝑆 ∈ Fin ↔ ¬ 𝑆 ≺ ω )
8 5 7 bitr4di ( 𝑆 ∈ dom card → ( ω ≼ 𝑆 ↔ ¬ 𝑆 ∈ Fin ) )
9 8 biimpar ( ( 𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin ) → ω ≼ 𝑆 )