Metamath Proof Explorer


Theorem numinfctb

Description: A numerable infinite set contains a countable subset.MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion numinfctb
|- ( ( S e. dom card /\ -. S e. Fin ) -> _om ~<_ S )

Proof

Step Hyp Ref Expression
1 omelon
 |-  _om e. On
2 onenon
 |-  ( _om e. On -> _om e. dom card )
3 1 2 ax-mp
 |-  _om e. dom card
4 domtri2
 |-  ( ( _om e. dom card /\ S e. dom card ) -> ( _om ~<_ S <-> -. S ~< _om ) )
5 3 4 mpan
 |-  ( S e. dom card -> ( _om ~<_ S <-> -. S ~< _om ) )
6 isfinite
 |-  ( S e. Fin <-> S ~< _om )
7 6 notbii
 |-  ( -. S e. Fin <-> -. S ~< _om )
8 5 7 bitr4di
 |-  ( S e. dom card -> ( _om ~<_ S <-> -. S e. Fin ) )
9 8 biimpar
 |-  ( ( S e. dom card /\ -. S e. Fin ) -> _om ~<_ S )