| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numma.1 | 
							⊢ 𝑇  ∈  ℕ0  | 
						
						
							| 2 | 
							
								
							 | 
							numma.2 | 
							⊢ 𝐴  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							numma.3 | 
							⊢ 𝐵  ∈  ℕ0  | 
						
						
							| 4 | 
							
								
							 | 
							numma.4 | 
							⊢ 𝐶  ∈  ℕ0  | 
						
						
							| 5 | 
							
								
							 | 
							numma.5 | 
							⊢ 𝐷  ∈  ℕ0  | 
						
						
							| 6 | 
							
								
							 | 
							numma.6 | 
							⊢ 𝑀  =  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							numma.7 | 
							⊢ 𝑁  =  ( ( 𝑇  ·  𝐶 )  +  𝐷 )  | 
						
						
							| 8 | 
							
								
							 | 
							numma2c.8 | 
							⊢ 𝑃  ∈  ℕ0  | 
						
						
							| 9 | 
							
								
							 | 
							numma2c.9 | 
							⊢ 𝐹  ∈  ℕ0  | 
						
						
							| 10 | 
							
								
							 | 
							numma2c.10 | 
							⊢ 𝐺  ∈  ℕ0  | 
						
						
							| 11 | 
							
								
							 | 
							numma2c.11 | 
							⊢ ( ( 𝑃  ·  𝐴 )  +  ( 𝐶  +  𝐺 ) )  =  𝐸  | 
						
						
							| 12 | 
							
								
							 | 
							numma2c.12 | 
							⊢ ( ( 𝑃  ·  𝐵 )  +  𝐷 )  =  ( ( 𝑇  ·  𝐺 )  +  𝐹 )  | 
						
						
							| 13 | 
							
								8
							 | 
							nn0cni | 
							⊢ 𝑃  ∈  ℂ  | 
						
						
							| 14 | 
							
								1 2 3
							 | 
							numcl | 
							⊢ ( ( 𝑇  ·  𝐴 )  +  𝐵 )  ∈  ℕ0  | 
						
						
							| 15 | 
							
								6 14
							 | 
							eqeltri | 
							⊢ 𝑀  ∈  ℕ0  | 
						
						
							| 16 | 
							
								15
							 | 
							nn0cni | 
							⊢ 𝑀  ∈  ℂ  | 
						
						
							| 17 | 
							
								13 16
							 | 
							mulcomi | 
							⊢ ( 𝑃  ·  𝑀 )  =  ( 𝑀  ·  𝑃 )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq1i | 
							⊢ ( ( 𝑃  ·  𝑀 )  +  𝑁 )  =  ( ( 𝑀  ·  𝑃 )  +  𝑁 )  | 
						
						
							| 19 | 
							
								2
							 | 
							nn0cni | 
							⊢ 𝐴  ∈  ℂ  | 
						
						
							| 20 | 
							
								19 13
							 | 
							mulcomi | 
							⊢ ( 𝐴  ·  𝑃 )  =  ( 𝑃  ·  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq1i | 
							⊢ ( ( 𝐴  ·  𝑃 )  +  ( 𝐶  +  𝐺 ) )  =  ( ( 𝑃  ·  𝐴 )  +  ( 𝐶  +  𝐺 ) )  | 
						
						
							| 22 | 
							
								21 11
							 | 
							eqtri | 
							⊢ ( ( 𝐴  ·  𝑃 )  +  ( 𝐶  +  𝐺 ) )  =  𝐸  | 
						
						
							| 23 | 
							
								3
							 | 
							nn0cni | 
							⊢ 𝐵  ∈  ℂ  | 
						
						
							| 24 | 
							
								23 13
							 | 
							mulcomi | 
							⊢ ( 𝐵  ·  𝑃 )  =  ( 𝑃  ·  𝐵 )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq1i | 
							⊢ ( ( 𝐵  ·  𝑃 )  +  𝐷 )  =  ( ( 𝑃  ·  𝐵 )  +  𝐷 )  | 
						
						
							| 26 | 
							
								25 12
							 | 
							eqtri | 
							⊢ ( ( 𝐵  ·  𝑃 )  +  𝐷 )  =  ( ( 𝑇  ·  𝐺 )  +  𝐹 )  | 
						
						
							| 27 | 
							
								1 2 3 4 5 6 7 8 9 10 22 26
							 | 
							nummac | 
							⊢ ( ( 𝑀  ·  𝑃 )  +  𝑁 )  =  ( ( 𝑇  ·  𝐸 )  +  𝐹 )  | 
						
						
							| 28 | 
							
								18 27
							 | 
							eqtri | 
							⊢ ( ( 𝑃  ·  𝑀 )  +  𝑁 )  =  ( ( 𝑇  ·  𝐸 )  +  𝐹 )  |