Metamath Proof Explorer
Description: Closure for a numeral (with units place). (Contributed by Mario
Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
|
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
|
|
numnncl.3 |
⊢ 𝐵 ∈ ℕ |
|
Assertion |
numnncl |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
numnncl.1 |
⊢ 𝑇 ∈ ℕ0 |
2 |
|
numnncl.2 |
⊢ 𝐴 ∈ ℕ0 |
3 |
|
numnncl.3 |
⊢ 𝐵 ∈ ℕ |
4 |
1 2
|
nn0mulcli |
⊢ ( 𝑇 · 𝐴 ) ∈ ℕ0 |
5 |
|
nn0nnaddcl |
⊢ ( ( ( 𝑇 · 𝐴 ) ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ ) |
6 |
4 3 5
|
mp2an |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ |