Metamath Proof Explorer


Theorem nvcli

Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1 𝑋 = ( BaseSet ‘ 𝑈 )
nvf.6 𝑁 = ( normCV𝑈 )
nvcli.9 𝑈 ∈ NrmCVec
nvcli.7 𝐴𝑋
Assertion nvcli ( 𝑁𝐴 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 nvf.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nvf.6 𝑁 = ( normCV𝑈 )
3 nvcli.9 𝑈 ∈ NrmCVec
4 nvcli.7 𝐴𝑋
5 1 2 nvcl ( ( 𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ ℝ )
6 3 4 5 mp2an ( 𝑁𝐴 ) ∈ ℝ