Metamath Proof Explorer
Description: The norm of a normed complex vector space is a real number.
(Contributed by NM, 20-Apr-2007) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
nvf.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
|
|
nvf.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
|
|
nvcli.9 |
⊢ 𝑈 ∈ NrmCVec |
|
|
nvcli.7 |
⊢ 𝐴 ∈ 𝑋 |
|
Assertion |
nvcli |
⊢ ( 𝑁 ‘ 𝐴 ) ∈ ℝ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nvf.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvf.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
3 |
|
nvcli.9 |
⊢ 𝑈 ∈ NrmCVec |
4 |
|
nvcli.7 |
⊢ 𝐴 ∈ 𝑋 |
5 |
1 2
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
6 |
3 4 5
|
mp2an |
⊢ ( 𝑁 ‘ 𝐴 ) ∈ ℝ |