Metamath Proof Explorer


Theorem nvcli

Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 20-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1 X=BaseSetU
nvf.6 N=normCVU
nvcli.9 UNrmCVec
nvcli.7 AX
Assertion nvcli NA

Proof

Step Hyp Ref Expression
1 nvf.1 X=BaseSetU
2 nvf.6 N=normCVU
3 nvcli.9 UNrmCVec
4 nvcli.7 AX
5 1 2 nvcl UNrmCVecAXNA
6 3 4 5 mp2an NA