Metamath Proof Explorer


Theorem nzrunit

Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nzrunit.1 𝑈 = ( Unit ‘ 𝑅 )
nzrunit.2 0 = ( 0g𝑅 )
Assertion nzrunit ( ( 𝑅 ∈ NzRing ∧ 𝐴𝑈 ) → 𝐴0 )

Proof

Step Hyp Ref Expression
1 nzrunit.1 𝑈 = ( Unit ‘ 𝑅 )
2 nzrunit.2 0 = ( 0g𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 3 2 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ 0 )
5 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
6 1 2 3 0unit ( 𝑅 ∈ Ring → ( 0𝑈 ↔ ( 1r𝑅 ) = 0 ) )
7 6 necon3bbid ( 𝑅 ∈ Ring → ( ¬ 0𝑈 ↔ ( 1r𝑅 ) ≠ 0 ) )
8 5 7 syl ( 𝑅 ∈ NzRing → ( ¬ 0𝑈 ↔ ( 1r𝑅 ) ≠ 0 ) )
9 4 8 mpbird ( 𝑅 ∈ NzRing → ¬ 0𝑈 )
10 eleq1 ( 𝐴 = 0 → ( 𝐴𝑈0𝑈 ) )
11 10 notbid ( 𝐴 = 0 → ( ¬ 𝐴𝑈 ↔ ¬ 0𝑈 ) )
12 9 11 syl5ibrcom ( 𝑅 ∈ NzRing → ( 𝐴 = 0 → ¬ 𝐴𝑈 ) )
13 12 necon2ad ( 𝑅 ∈ NzRing → ( 𝐴𝑈𝐴0 ) )
14 13 imp ( ( 𝑅 ∈ NzRing ∧ 𝐴𝑈 ) → 𝐴0 )