Description: Given A e. On , let A +o 1o be defined to be the union of A and { A } . Compare with oa1suc . (Contributed by RP, 27-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oa1un | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = ( 𝐴 ∪ { 𝐴 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oa1suc | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = suc 𝐴 ) | |
| 2 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o 1o ) = ( 𝐴 ∪ { 𝐴 } ) ) |