Metamath Proof Explorer


Theorem oaordi3

Description: Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaordi3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐶 ∈ On )
2 simp1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ∈ On )
3 1 2 jca ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) )
4 oaordi ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) )
5 3 4 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) )