Description: Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaordi3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐶 ∈ On ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ∈ On ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ) |
| 4 | oaordi | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 +o 𝐵 ) ∈ ( 𝐴 +o 𝐶 ) ) ) |