Metamath Proof Explorer


Theorem oaordi3

Description: Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaordi3
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) )

Proof

Step Hyp Ref Expression
1 simp3
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> C e. On )
2 simp1
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> A e. On )
3 1 2 jca
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( C e. On /\ A e. On ) )
4 oaordi
 |-  ( ( C e. On /\ A e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) )
5 3 4 syl
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) )