Description: Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaordi3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> C e. On ) |
|
| 2 | simp1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> A e. On ) |
|
| 3 | 1 2 | jca | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C e. On /\ A e. On ) ) |
| 4 | oaordi | |- ( ( C e. On /\ A e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) ) |