| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
| 2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
| 4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
| 5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
| 7 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 8 |
|
fveq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 9 |
|
eleq12 |
⊢ ( ( ( 𝑥 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ∧ ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
| 11 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 12 |
|
fveq1 |
⊢ ( 𝑦 = 𝐺 → ( 𝑦 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 13 |
11 12
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 15 |
14
|
ralbidv |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 16 |
10 15
|
anbi12d |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( ( 𝑥 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 18 |
17 4
|
brabga |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 19 |
5 6 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |