Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) |
2 |
|
cantnfs.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
3 |
|
cantnfs.b |
⊢ ( 𝜑 → 𝐵 ∈ On ) |
4 |
|
oemapval.t |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } |
5 |
|
oemapval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
6 |
|
oemapval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
7 |
|
oemapvali.r |
⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) |
8 |
|
oemapvali.x |
⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } |
9 |
1 2 3 4 5 6
|
oemapval |
⊢ ( 𝜑 → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
10 |
7 9
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
11 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ 𝐵 |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐵 ∈ On ) |
13 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐵 ⊆ On ) |
15 |
11 14
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ On ) |
16 |
1 2 3
|
cantnfs |
⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
17 |
6 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
18 |
17
|
simprd |
⊢ ( 𝜑 → 𝐺 finSupp ∅ ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐺 finSupp ∅ ) |
20 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝐵 ∈ On ) |
21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝑐 ∈ 𝐵 ) |
22 |
17
|
simpld |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
23 |
22
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝐺 Fn 𝐵 ) |
25 |
|
ne0i |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) → ( 𝐺 ‘ 𝑐 ) ≠ ∅ ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → ( 𝐺 ‘ 𝑐 ) ≠ ∅ ) |
27 |
|
fvn0elsupp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑐 ) ≠ ∅ ) ) → 𝑐 ∈ ( 𝐺 supp ∅ ) ) |
28 |
20 21 24 26 27
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝑐 ∈ ( 𝐺 supp ∅ ) ) |
29 |
28
|
rabssdv |
⊢ ( 𝜑 → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) ) |
31 |
|
fsuppimp |
⊢ ( 𝐺 finSupp ∅ → ( Fun 𝐺 ∧ ( 𝐺 supp ∅ ) ∈ Fin ) ) |
32 |
|
ssfi |
⊢ ( ( ( 𝐺 supp ∅ ) ∈ Fin ∧ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) |
33 |
32
|
ex |
⊢ ( ( 𝐺 supp ∅ ) ∈ Fin → ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) ) |
34 |
31 33
|
simpl2im |
⊢ ( 𝐺 finSupp ∅ → ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) ) |
35 |
19 30 34
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) |
36 |
|
fveq2 |
⊢ ( 𝑐 = 𝑧 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑧 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑐 = 𝑧 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑧 ) ) |
38 |
36 37
|
eleq12d |
⊢ ( 𝑐 = 𝑧 → ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ∈ 𝐵 ) |
40 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) |
41 |
38 39 40
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
42 |
41
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ≠ ∅ ) |
43 |
|
ordunifi |
⊢ ( ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ On ∧ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ∧ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ≠ ∅ ) → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
44 |
15 35 42 43
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
45 |
8 44
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
46 |
11 45
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ∈ 𝐵 ) |
47 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
49 |
47 48
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) ) |
50 |
|
fveq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑥 ) ) |
51 |
|
fveq2 |
⊢ ( 𝑐 = 𝑥 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑥 ) ) |
52 |
50 51
|
eleq12d |
⊢ ( 𝑐 = 𝑥 → ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑥 ) ) ) |
53 |
52
|
cbvrabv |
⊢ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑥 ) } |
54 |
49 53
|
elrab2 |
⊢ ( 𝑋 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) ) |
55 |
45 54
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) ) |
56 |
55
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
57 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐴 ∈ On ) |
59 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
60 |
59 46
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
61 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ On ) |
62 |
58 60 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐺 ‘ 𝑋 ) ∈ On ) |
63 |
|
eloni |
⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ On → Ord ( 𝐺 ‘ 𝑋 ) ) |
64 |
|
ordirr |
⊢ ( Ord ( 𝐺 ‘ 𝑋 ) → ¬ ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
65 |
62 63 64
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ¬ ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
66 |
|
nelneq |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ¬ ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) → ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
67 |
56 65 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
68 |
|
eleq2 |
⊢ ( 𝑤 = 𝑋 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑋 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑤 = 𝑋 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑋 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑤 = 𝑋 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑋 ) ) |
71 |
69 70
|
eqeq12d |
⊢ ( 𝑤 = 𝑋 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) ) |
72 |
68 71
|
imbi12d |
⊢ ( 𝑤 = 𝑋 → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) ) ) |
73 |
72 57 46
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) ) |
74 |
67 73
|
mtod |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ¬ 𝑧 ∈ 𝑋 ) |
75 |
|
ssexg |
⊢ ( ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ 𝐵 ∧ 𝐵 ∈ On ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ V ) |
76 |
11 12 75
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ V ) |
77 |
|
ssonuni |
⊢ ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ V → ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ On → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ On ) ) |
78 |
76 15 77
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ On ) |
79 |
8 78
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ∈ On ) |
80 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ On ) |
81 |
12 39 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ∈ On ) |
82 |
|
ontri1 |
⊢ ( ( 𝑋 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑋 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑋 ) ) |
83 |
79 81 82
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑋 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑋 ) ) |
84 |
74 83
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ⊆ 𝑧 ) |
85 |
|
elssuni |
⊢ ( 𝑧 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } → 𝑧 ⊆ ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
86 |
85 8
|
sseqtrrdi |
⊢ ( 𝑧 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } → 𝑧 ⊆ 𝑋 ) |
87 |
41 86
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ⊆ 𝑋 ) |
88 |
84 87
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 = 𝑧 ) |
89 |
|
eleq1 |
⊢ ( 𝑋 = 𝑧 → ( 𝑋 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
90 |
89
|
imbi1d |
⊢ ( 𝑋 = 𝑧 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
91 |
90
|
ralbidv |
⊢ ( 𝑋 = 𝑧 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
92 |
88 91
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
93 |
57 92
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
94 |
46 56 93
|
3jca |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
95 |
10 94
|
rexlimddv |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |