Metamath Proof Explorer


Theorem oemapvali

Description: If F < G , then there is some z witnessing this, but we can say more and in fact there is a definable expression X that also witnesses F < G . (Contributed by Mario Carneiro, 25-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
oemapval.f φ F S
oemapval.g φ G S
oemapvali.r φ F T G
oemapvali.x X = c B | F c G c
Assertion oemapvali φ X B F X G X w B X w F w = G w

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oemapval.f φ F S
6 oemapval.g φ G S
7 oemapvali.r φ F T G
8 oemapvali.x X = c B | F c G c
9 1 2 3 4 5 6 oemapval φ F T G z B F z G z w B z w F w = G w
10 7 9 mpbid φ z B F z G z w B z w F w = G w
11 ssrab2 c B | F c G c B
12 3 adantr φ z B F z G z w B z w F w = G w B On
13 onss B On B On
14 12 13 syl φ z B F z G z w B z w F w = G w B On
15 11 14 sstrid φ z B F z G z w B z w F w = G w c B | F c G c On
16 1 2 3 cantnfs φ G S G : B A finSupp G
17 6 16 mpbid φ G : B A finSupp G
18 17 simprd φ finSupp G
19 18 adantr φ z B F z G z w B z w F w = G w finSupp G
20 3 3ad2ant1 φ c B F c G c B On
21 simp2 φ c B F c G c c B
22 17 simpld φ G : B A
23 22 ffnd φ G Fn B
24 23 3ad2ant1 φ c B F c G c G Fn B
25 ne0i F c G c G c
26 25 3ad2ant3 φ c B F c G c G c
27 fvn0elsupp B On c B G Fn B G c c supp G
28 20 21 24 26 27 syl22anc φ c B F c G c c supp G
29 28 rabssdv φ c B | F c G c G supp
30 29 adantr φ z B F z G z w B z w F w = G w c B | F c G c G supp
31 fsuppimp finSupp G Fun G G supp Fin
32 ssfi G supp Fin c B | F c G c G supp c B | F c G c Fin
33 32 ex G supp Fin c B | F c G c G supp c B | F c G c Fin
34 31 33 simpl2im finSupp G c B | F c G c G supp c B | F c G c Fin
35 19 30 34 sylc φ z B F z G z w B z w F w = G w c B | F c G c Fin
36 fveq2 c = z F c = F z
37 fveq2 c = z G c = G z
38 36 37 eleq12d c = z F c G c F z G z
39 simprl φ z B F z G z w B z w F w = G w z B
40 simprrl φ z B F z G z w B z w F w = G w F z G z
41 38 39 40 elrabd φ z B F z G z w B z w F w = G w z c B | F c G c
42 41 ne0d φ z B F z G z w B z w F w = G w c B | F c G c
43 ordunifi c B | F c G c On c B | F c G c Fin c B | F c G c c B | F c G c c B | F c G c
44 15 35 42 43 syl3anc φ z B F z G z w B z w F w = G w c B | F c G c c B | F c G c
45 8 44 eqeltrid φ z B F z G z w B z w F w = G w X c B | F c G c
46 11 45 sseldi φ z B F z G z w B z w F w = G w X B
47 fveq2 x = X F x = F X
48 fveq2 x = X G x = G X
49 47 48 eleq12d x = X F x G x F X G X
50 fveq2 c = x F c = F x
51 fveq2 c = x G c = G x
52 50 51 eleq12d c = x F c G c F x G x
53 52 cbvrabv c B | F c G c = x B | F x G x
54 49 53 elrab2 X c B | F c G c X B F X G X
55 45 54 sylib φ z B F z G z w B z w F w = G w X B F X G X
56 55 simprd φ z B F z G z w B z w F w = G w F X G X
57 simprrr φ z B F z G z w B z w F w = G w w B z w F w = G w
58 2 adantr φ z B F z G z w B z w F w = G w A On
59 22 adantr φ z B F z G z w B z w F w = G w G : B A
60 59 46 ffvelrnd φ z B F z G z w B z w F w = G w G X A
61 onelon A On G X A G X On
62 58 60 61 syl2anc φ z B F z G z w B z w F w = G w G X On
63 eloni G X On Ord G X
64 ordirr Ord G X ¬ G X G X
65 62 63 64 3syl φ z B F z G z w B z w F w = G w ¬ G X G X
66 nelneq F X G X ¬ G X G X ¬ F X = G X
67 56 65 66 syl2anc φ z B F z G z w B z w F w = G w ¬ F X = G X
68 eleq2 w = X z w z X
69 fveq2 w = X F w = F X
70 fveq2 w = X G w = G X
71 69 70 eqeq12d w = X F w = G w F X = G X
72 68 71 imbi12d w = X z w F w = G w z X F X = G X
73 72 57 46 rspcdva φ z B F z G z w B z w F w = G w z X F X = G X
74 67 73 mtod φ z B F z G z w B z w F w = G w ¬ z X
75 ssexg c B | F c G c B B On c B | F c G c V
76 11 12 75 sylancr φ z B F z G z w B z w F w = G w c B | F c G c V
77 ssonuni c B | F c G c V c B | F c G c On c B | F c G c On
78 76 15 77 sylc φ z B F z G z w B z w F w = G w c B | F c G c On
79 8 78 eqeltrid φ z B F z G z w B z w F w = G w X On
80 onelon B On z B z On
81 12 39 80 syl2anc φ z B F z G z w B z w F w = G w z On
82 ontri1 X On z On X z ¬ z X
83 79 81 82 syl2anc φ z B F z G z w B z w F w = G w X z ¬ z X
84 74 83 mpbird φ z B F z G z w B z w F w = G w X z
85 elssuni z c B | F c G c z c B | F c G c
86 85 8 sseqtrrdi z c B | F c G c z X
87 41 86 syl φ z B F z G z w B z w F w = G w z X
88 84 87 eqssd φ z B F z G z w B z w F w = G w X = z
89 eleq1 X = z X w z w
90 89 imbi1d X = z X w F w = G w z w F w = G w
91 90 ralbidv X = z w B X w F w = G w w B z w F w = G w
92 88 91 syl φ z B F z G z w B z w F w = G w w B X w F w = G w w B z w F w = G w
93 57 92 mpbird φ z B F z G z w B z w F w = G w w B X w F w = G w
94 46 56 93 3jca φ z B F z G z w B z w F w = G w X B F X G X w B X w F w = G w
95 10 94 rexlimddv φ X B F X G X w B X w F w = G w