Metamath Proof Explorer


Theorem cantnfs

Description: Elementhood in the set of finitely supported functions from B to A . (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
Assertion cantnfs φFSF:BAfinSuppF

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 eqid gAB|finSuppg=gAB|finSuppg
5 4 2 3 cantnfdm φdomACNFB=gAB|finSuppg
6 1 5 eqtrid φS=gAB|finSuppg
7 6 eleq2d φFSFgAB|finSuppg
8 breq1 g=FfinSuppgfinSuppF
9 8 elrab FgAB|finSuppgFABfinSuppF
10 7 9 bitrdi φFSFABfinSuppF
11 2 3 elmapd φFABF:BA
12 11 anbi1d φFABfinSuppFF:BAfinSuppF
13 10 12 bitrd φFSF:BAfinSuppF