Metamath Proof Explorer


Theorem ordunifi

Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion ordunifi A On A Fin A A A

Proof

Step Hyp Ref Expression
1 epweon E We On
2 weso E We On E Or On
3 1 2 ax-mp E Or On
4 soss A On E Or On E Or A
5 3 4 mpi A On E Or A
6 fimax2g E Or A A Fin A x A y A ¬ x E y
7 5 6 syl3an1 A On A Fin A x A y A ¬ x E y
8 ssel2 A On y A y On
9 8 adantlr A On x A y A y On
10 ssel2 A On x A x On
11 10 adantr A On x A y A x On
12 epel x E y x y
13 12 notbii ¬ x E y ¬ x y
14 ontri1 y On x On y x ¬ x y
15 13 14 bitr4id y On x On ¬ x E y y x
16 9 11 15 syl2anc A On x A y A ¬ x E y y x
17 16 ralbidva A On x A y A ¬ x E y y A y x
18 unissb A x y A y x
19 17 18 bitr4di A On x A y A ¬ x E y A x
20 19 rexbidva A On x A y A ¬ x E y x A A x
21 20 3ad2ant1 A On A Fin A x A y A ¬ x E y x A A x
22 7 21 mpbid A On A Fin A x A A x
23 elssuni x A x A
24 eqss x = A x A A x
25 eleq1 x = A x A A A
26 25 biimpcd x A x = A A A
27 24 26 syl5bir x A x A A x A A
28 23 27 mpand x A A x A A
29 28 rexlimiv x A A x A A
30 22 29 syl A On A Fin A A A