Metamath Proof Explorer


Theorem fimax2g

Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion fimax2g ROrAAFinAxAyA¬xRy

Proof

Step Hyp Ref Expression
1 sopo ROrARPoA
2 cnvpo RPoAR-1PoA
3 1 2 sylib ROrAR-1PoA
4 frfi R-1PoAAFinR-1FrA
5 3 4 sylan ROrAAFinR-1FrA
6 5 3adant3 ROrAAFinAR-1FrA
7 ssid AA
8 fri AFinR-1FrAAAAxAyA¬yR-1x
9 7 8 mpanr1 AFinR-1FrAAxAyA¬yR-1x
10 9 an32s AFinAR-1FrAxAyA¬yR-1x
11 vex yV
12 vex xV
13 11 12 brcnv yR-1xxRy
14 13 notbii ¬yR-1x¬xRy
15 14 ralbii yA¬yR-1xyA¬xRy
16 15 rexbii xAyA¬yR-1xxAyA¬xRy
17 10 16 sylib AFinAR-1FrAxAyA¬xRy
18 17 ex AFinAR-1FrAxAyA¬xRy
19 18 3adant1 ROrAAFinAR-1FrAxAyA¬xRy
20 6 19 mpd ROrAAFinAxAyA¬xRy