Metamath Proof Explorer


Theorem offn

Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses offval.1 ( 𝜑𝐹 Fn 𝐴 )
offval.2 ( 𝜑𝐺 Fn 𝐵 )
offval.3 ( 𝜑𝐴𝑉 )
offval.4 ( 𝜑𝐵𝑊 )
offval.5 ( 𝐴𝐵 ) = 𝑆
Assertion offn ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) Fn 𝑆 )

Proof

Step Hyp Ref Expression
1 offval.1 ( 𝜑𝐹 Fn 𝐴 )
2 offval.2 ( 𝜑𝐺 Fn 𝐵 )
3 offval.3 ( 𝜑𝐴𝑉 )
4 offval.4 ( 𝜑𝐵𝑊 )
5 offval.5 ( 𝐴𝐵 ) = 𝑆
6 ovex ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) ∈ V
7 eqid ( 𝑥𝑆 ↦ ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) ) = ( 𝑥𝑆 ↦ ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) )
8 6 7 fnmpti ( 𝑥𝑆 ↦ ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) ) Fn 𝑆
9 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
10 eqidd ( ( 𝜑𝑥𝐵 ) → ( 𝐺𝑥 ) = ( 𝐺𝑥 ) )
11 1 2 3 4 5 9 10 offval ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) = ( 𝑥𝑆 ↦ ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) ) )
12 11 fneq1d ( 𝜑 → ( ( 𝐹f 𝑅 𝐺 ) Fn 𝑆 ↔ ( 𝑥𝑆 ↦ ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) ) Fn 𝑆 ) )
13 8 12 mpbiri ( 𝜑 → ( 𝐹f 𝑅 𝐺 ) Fn 𝑆 )