Description: The range of the function operation. (Contributed by Thierry Arnoux, 8-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofrn.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| ofrn.2 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | ||
| ofrn.3 | ⊢ ( 𝜑 → + : ( 𝐵 × 𝐵 ) ⟶ 𝐶 ) | ||
| ofrn.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | ofrn | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ofrn.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | ofrn.2 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 3 | ofrn.3 | ⊢ ( 𝜑 → + : ( 𝐵 × 𝐵 ) ⟶ 𝐶 ) | |
| 4 | ofrn.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | 3 | fovcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) | 
| 6 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 7 | 5 1 2 4 4 6 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : 𝐴 ⟶ 𝐶 ) | 
| 8 | 7 | frnd | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ 𝐶 ) |