| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) |
| 2 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 4 |
|
df-ne |
⊢ ( ( 𝑎 ∩ 𝑥 ) ≠ ∅ ↔ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) |
| 5 |
3 4
|
imbitrrdi |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) |
| 6 |
|
pm3.2 |
⊢ ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) → ( ( 𝑎 ∩ 𝑥 ) ≠ ∅ → ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 7 |
1 5 6
|
mpsylsyld |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
8
|
inex2 |
⊢ ( 𝑎 ∩ 𝑥 ) ∈ V |
| 10 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 |
| 11 |
|
simpl |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ On ) |
| 12 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ 𝑎 ) |
| 13 |
|
ssel |
⊢ ( 𝑎 ⊆ On → ( 𝑥 ∈ 𝑎 → 𝑥 ∈ On ) ) |
| 14 |
11 12 13
|
syl2im |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ On ) ) |
| 15 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 16 |
14 15
|
syl6 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → Ord 𝑥 ) ) |
| 17 |
|
ordwe |
⊢ ( Ord 𝑥 → E We 𝑥 ) |
| 18 |
16 17
|
syl6 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → E We 𝑥 ) ) |
| 19 |
|
wess |
⊢ ( ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 → ( E We 𝑥 → E We ( 𝑎 ∩ 𝑥 ) ) ) |
| 20 |
10 18 19
|
mpsylsyld |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → E We ( 𝑎 ∩ 𝑥 ) ) ) |
| 21 |
|
wefr |
⊢ ( E We ( 𝑎 ∩ 𝑥 ) → E Fr ( 𝑎 ∩ 𝑥 ) ) |
| 22 |
20 21
|
syl6 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → E Fr ( 𝑎 ∩ 𝑥 ) ) ) |
| 23 |
|
dfepfr |
⊢ ( E Fr ( 𝑎 ∩ 𝑥 ) ↔ ∀ 𝑏 ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) |
| 24 |
22 23
|
imbitrdi |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∀ 𝑏 ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) |
| 25 |
|
spsbc |
⊢ ( ( 𝑎 ∩ 𝑥 ) ∈ V → ( ∀ 𝑏 ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) |
| 26 |
9 24 25
|
mpsylsyld |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ) ) |
| 27 |
|
onfrALTlem5 |
⊢ ( [ ( 𝑎 ∩ 𝑥 ) / 𝑏 ] ( ( 𝑏 ⊆ ( 𝑎 ∩ 𝑥 ) ∧ 𝑏 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑏 ( 𝑏 ∩ 𝑦 ) = ∅ ) ↔ ( ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
| 28 |
26 27
|
imbitrdi |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ( ( ( 𝑎 ∩ 𝑥 ) ⊆ ( 𝑎 ∩ 𝑥 ) ∧ ( 𝑎 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) ) |
| 29 |
7 28
|
mpdd |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |