Metamath Proof Explorer


Theorem onno

Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023)

Ref Expression
Assertion onno ( 𝐴 ∈ On → ( 𝐴 × { 2o } ) ∈ No )

Proof

Step Hyp Ref Expression
1 2oex 2o ∈ V
2 1 prid2 2o ∈ { 1o , 2o }
3 onnog ( ( 𝐴 ∈ On ∧ 2o ∈ { 1o , 2o } ) → ( 𝐴 × { 2o } ) ∈ No )
4 2 3 mpan2 ( 𝐴 ∈ On → ( 𝐴 × { 2o } ) ∈ No )