Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onsetreclem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
Assertion | onsetreclem1 | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
2 | unieq | ⊢ ( 𝑥 = 𝑎 → ∪ 𝑥 = ∪ 𝑎 ) | |
3 | suceq | ⊢ ( ∪ 𝑥 = ∪ 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎 ) | |
4 | 2 3 | syl | ⊢ ( 𝑥 = 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎 ) |
5 | 2 4 | preq12d | ⊢ ( 𝑥 = 𝑎 → { ∪ 𝑥 , suc ∪ 𝑥 } = { ∪ 𝑎 , suc ∪ 𝑎 } ) |
6 | prex | ⊢ { ∪ 𝑎 , suc ∪ 𝑎 } ∈ V | |
7 | 5 1 6 | fvmpt | ⊢ ( 𝑎 ∈ V → ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } ) |
8 | 7 | elv | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } |