Metamath Proof Explorer


Theorem onsetreclem1

Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)

Ref Expression
Hypothesis onsetreclem1.1 𝐹 = ( 𝑥 ∈ V ↦ { 𝑥 , suc 𝑥 } )
Assertion onsetreclem1 ( 𝐹𝑎 ) = { 𝑎 , suc 𝑎 }

Proof

Step Hyp Ref Expression
1 onsetreclem1.1 𝐹 = ( 𝑥 ∈ V ↦ { 𝑥 , suc 𝑥 } )
2 unieq ( 𝑥 = 𝑎 𝑥 = 𝑎 )
3 suceq ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎 )
4 2 3 syl ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎 )
5 2 4 preq12d ( 𝑥 = 𝑎 → { 𝑥 , suc 𝑥 } = { 𝑎 , suc 𝑎 } )
6 prex { 𝑎 , suc 𝑎 } ∈ V
7 5 1 6 fvmpt ( 𝑎 ∈ V → ( 𝐹𝑎 ) = { 𝑎 , suc 𝑎 } )
8 7 elv ( 𝐹𝑎 ) = { 𝑎 , suc 𝑎 }