Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onsetreclem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
| Assertion | onsetreclem1 | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsetreclem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
| 2 | unieq | ⊢ ( 𝑥 = 𝑎 → ∪ 𝑥 = ∪ 𝑎 ) | |
| 3 | suceq | ⊢ ( ∪ 𝑥 = ∪ 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑥 = 𝑎 → suc ∪ 𝑥 = suc ∪ 𝑎 ) | 
| 5 | 2 4 | preq12d | ⊢ ( 𝑥 = 𝑎 → { ∪ 𝑥 , suc ∪ 𝑥 } = { ∪ 𝑎 , suc ∪ 𝑎 } ) | 
| 6 | prex | ⊢ { ∪ 𝑎 , suc ∪ 𝑎 } ∈ V | |
| 7 | 5 1 6 | fvmpt | ⊢ ( 𝑎 ∈ V → ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } ) | 
| 8 | 7 | elv | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } |