Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onsetreclem2.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
| Assertion | onsetreclem2 | ⊢ ( 𝑎 ⊆ On → ( 𝐹 ‘ 𝑎 ) ⊆ On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsetreclem2.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
| 2 | 1 | onsetreclem1 | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } | 
| 3 | vex | ⊢ 𝑎 ∈ V | |
| 4 | 3 | ssonunii | ⊢ ( 𝑎 ⊆ On → ∪ 𝑎 ∈ On ) | 
| 5 | onsuc | ⊢ ( ∪ 𝑎 ∈ On → suc ∪ 𝑎 ∈ On ) | |
| 6 | prssi | ⊢ ( ( ∪ 𝑎 ∈ On ∧ suc ∪ 𝑎 ∈ On ) → { ∪ 𝑎 , suc ∪ 𝑎 } ⊆ On ) | |
| 7 | 4 5 6 | syl2anc2 | ⊢ ( 𝑎 ⊆ On → { ∪ 𝑎 , suc ∪ 𝑎 } ⊆ On ) | 
| 8 | 2 7 | eqsstrid | ⊢ ( 𝑎 ⊆ On → ( 𝐹 ‘ 𝑎 ) ⊆ On ) |