Metamath Proof Explorer


Theorem onsetreclem2

Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)

Ref Expression
Hypothesis onsetreclem2.1 𝐹 = ( 𝑥 ∈ V ↦ { 𝑥 , suc 𝑥 } )
Assertion onsetreclem2 ( 𝑎 ⊆ On → ( 𝐹𝑎 ) ⊆ On )

Proof

Step Hyp Ref Expression
1 onsetreclem2.1 𝐹 = ( 𝑥 ∈ V ↦ { 𝑥 , suc 𝑥 } )
2 1 onsetreclem1 ( 𝐹𝑎 ) = { 𝑎 , suc 𝑎 }
3 vex 𝑎 ∈ V
4 3 ssonunii ( 𝑎 ⊆ On → 𝑎 ∈ On )
5 suceloni ( 𝑎 ∈ On → suc 𝑎 ∈ On )
6 prssi ( ( 𝑎 ∈ On ∧ suc 𝑎 ∈ On ) → { 𝑎 , suc 𝑎 } ⊆ On )
7 4 5 6 syl2anc2 ( 𝑎 ⊆ On → { 𝑎 , suc 𝑎 } ⊆ On )
8 2 7 eqsstrid ( 𝑎 ⊆ On → ( 𝐹𝑎 ) ⊆ On )