Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | onsetreclem2.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
Assertion | onsetreclem2 | ⊢ ( 𝑎 ⊆ On → ( 𝐹 ‘ 𝑎 ) ⊆ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsetreclem2.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
2 | 1 | onsetreclem1 | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } |
3 | vex | ⊢ 𝑎 ∈ V | |
4 | 3 | ssonunii | ⊢ ( 𝑎 ⊆ On → ∪ 𝑎 ∈ On ) |
5 | suceloni | ⊢ ( ∪ 𝑎 ∈ On → suc ∪ 𝑎 ∈ On ) | |
6 | prssi | ⊢ ( ( ∪ 𝑎 ∈ On ∧ suc ∪ 𝑎 ∈ On ) → { ∪ 𝑎 , suc ∪ 𝑎 } ⊆ On ) | |
7 | 4 5 6 | syl2anc2 | ⊢ ( 𝑎 ⊆ On → { ∪ 𝑎 , suc ∪ 𝑎 } ⊆ On ) |
8 | 2 7 | eqsstrid | ⊢ ( 𝑎 ⊆ On → ( 𝐹 ‘ 𝑎 ) ⊆ On ) |