Metamath Proof Explorer


Theorem onsetreclem3

Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)

Ref Expression
Hypothesis onsetreclem3.1 𝐹 = ( 𝑥 ∈ V ↦ { 𝑥 , suc 𝑥 } )
Assertion onsetreclem3 ( 𝑎 ∈ On → 𝑎 ∈ ( 𝐹𝑎 ) )

Proof

Step Hyp Ref Expression
1 onsetreclem3.1 𝐹 = ( 𝑥 ∈ V ↦ { 𝑥 , suc 𝑥 } )
2 eloni ( 𝑎 ∈ On → Ord 𝑎 )
3 orduniorsuc ( Ord 𝑎 → ( 𝑎 = 𝑎𝑎 = suc 𝑎 ) )
4 2 3 syl ( 𝑎 ∈ On → ( 𝑎 = 𝑎𝑎 = suc 𝑎 ) )
5 vex 𝑎 ∈ V
6 5 elpr ( 𝑎 ∈ { 𝑎 , suc 𝑎 } ↔ ( 𝑎 = 𝑎𝑎 = suc 𝑎 ) )
7 4 6 sylibr ( 𝑎 ∈ On → 𝑎 ∈ { 𝑎 , suc 𝑎 } )
8 1 onsetreclem1 ( 𝐹𝑎 ) = { 𝑎 , suc 𝑎 }
9 7 8 eleqtrrdi ( 𝑎 ∈ On → 𝑎 ∈ ( 𝐹𝑎 ) )