Description: Lemma for onsetrec . (Contributed by Emmett Weisz, 22-Jun-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | onsetreclem3.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
| Assertion | onsetreclem3 | ⊢ ( 𝑎 ∈ On → 𝑎 ∈ ( 𝐹 ‘ 𝑎 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsetreclem3.1 | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { ∪ 𝑥 , suc ∪ 𝑥 } ) | |
| 2 | eloni | ⊢ ( 𝑎 ∈ On → Ord 𝑎 ) | |
| 3 | orduniorsuc | ⊢ ( Ord 𝑎 → ( 𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑎 ∈ On → ( 𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎 ) ) | 
| 5 | vex | ⊢ 𝑎 ∈ V | |
| 6 | 5 | elpr | ⊢ ( 𝑎 ∈ { ∪ 𝑎 , suc ∪ 𝑎 } ↔ ( 𝑎 = ∪ 𝑎 ∨ 𝑎 = suc ∪ 𝑎 ) ) | 
| 7 | 4 6 | sylibr | ⊢ ( 𝑎 ∈ On → 𝑎 ∈ { ∪ 𝑎 , suc ∪ 𝑎 } ) | 
| 8 | 1 | onsetreclem1 | ⊢ ( 𝐹 ‘ 𝑎 ) = { ∪ 𝑎 , suc ∪ 𝑎 } | 
| 9 | 7 8 | eleqtrrdi | ⊢ ( 𝑎 ∈ On → 𝑎 ∈ ( 𝐹 ‘ 𝑎 ) ) |